
On-the-fly Cone-of-Influence Reduction for Model
Checking Concurrent Software

Csanád Telbisz , Levente Bajczi , Dániel Szekeres , and András Vörös

Department of Artificial Intelligence and Systems Engineering
Budapest University of Technology and Economics, Budapest, Hungary
csanadtelbisz@edu.bme.hu, {bajczi,szekeres,vori}@mit.bme.hu

https://ftsrg.mit.bme.hu

Abstract. Calculating successor states in SMT-based software model
checking is a costly task that often requires solving an SMT problem.
However, in many cases, the evaluation of a program statement has no
effect with respect to the verified property. Successor state calculation
can be simplified in such cases. Several algorithms exist such as the cone-
of-influence reduction that statically analyze the model and eliminate
irrelevant variables from the model. In concurrent software, however, it
is common for the result of a statement to be used in one interleaving of
threads while unused in another. Algorithms that statically analyze the
model cannot simplify such statements. Our on-the-fly approach detects
whether a statement can be simplified during the state space exploration
based on the current state of each process. Evaluation results show that
our algorithm can simplify around 20% of all statements on average over
a large set of benchmark programs while reducing the time of successor
state calculation by more than 30% on average.

Keywords: cone-of-influence · concurrency · abstraction · data-flow.

Funding. This research was partially funded by the 2024-2.1.1-EKÖP-2024-00003 Uni-
versity Research Scholarship Programme under project numbers EKÖP-24-2-BME-118
and EKÖP-24-3-BME-{159,213}, and the Doctoral Excellence Fellowship Programme
under project numbers 400434/2023 and 400443/2023; with the support provided by
the Ministry of Culture and Innovation of Hungary from the NRDI Fund.

1 Introduction

Model checking has been a field of active research in recent decades as it is one
of the most powerful software verification techniques. Model checking algorithms
face the state space explosion problem: the state space of software systems grows
exponentially with the number of variables [24]. Concurrency further increases
the complexity due to the great number of possible thread interleavings. Various
techniques have been developed to tackle this vast complexity. Partial order re-
duction avoids exploring parts of the state space when it is guaranteed that an

http://orcid.org/0000-0002-6260-5908
http://orcid.org/0000-0002-6551-5860
http://orcid.org/0000-0002-2912-028X
http://orcid.org/0000-0001-7617-3563
https://ftsrg.mit.bme.hu


2 C. Telbisz et al.

equivalent thread interleaving is explored for each avoided trace [44]. Abstrac-
tion reduces the size of the state space by ignoring some details of the original
problem [22,23]. Counterexample-guided abstraction refinement (CEGAR) itera-
tively refines the abstraction until the desired property can be verified [22]. Other
abstraction-based techniques like the cone-of-influence (COI) reduction or pro-
gram slicing eliminate model elements irrelevant to the verified property [10,33].

Existing cone-of-influence and slicing techniques choose eliminable variables
or statements using static data-flow analysis based on the control-flow of the
program [10, 33]. In concurrent programs, this kind of elimination is often inef-
fective due to the communication between threads and the many possible thread
interleavings. To address this, we propose an algorithm that can eliminate state-
ments based on the current local states of concurrent threads. Whereas the COI
reduction simplifies the model by eliminating completely redundant variables
(redundant in all thread contexts) regarding the verified property [10], our ap-
proach identifies and simplifies statements on-the-fly that are redundant in the
current state of concurrent threads with respect to the verified property. Thus,
our method is more fine-grained: it can eliminate statements in certain contexts
even if the statement cannot always be ignored. This is particularly useful when
a statement is relevant in one interleaving of threads while it is redundant in
another: we eliminate it in cases when it is redundant. As our algorithm takes
its main advantage from the local states and interleaving of threads, we focus
our presentation on concurrent programs. While our method could also be used
for sequential programs, it loses its advantage over other techniques in that case.

As an example, take the program with two threads from Figure 1a. Let us
take a state s from the state space of the program where process p2 has executed
the statement y := x previously (i.e., this statement can be found on the path
from the initial state to s). Observe that the value of x cannot be read by
any statement of any thread reachable from s in the state space. Thus, it is
unnecessary to evaluate x := 1 or x := 0 after s. Our algorithm detects such
situations and eliminates such statements. Note that a traditional COI algorithm
could not eliminate the statement x := 1 as its result may be used.

Our statement simplification method is motivated by the considerable run-
time of calculating successor states in SMT-based state space exploration [12,32].
We strive to dynamically identify as many redundant statements as possible in
the current exploration context. For this, we build a data-flow graph and update
it based on the current thread interleaving during the state space exploration to
reflect the individual states of each process. Before evaluating a statement (i.e.,
calculating the successor of the current state with respect to this statement), we
check using the data-flow graph whether any other statement can use the result
of the statement. We target reachability properties; thus, we are interested in
whether the result of the statement is used transitively by a conditional state-
ment, as only conditionals can directly influence whether some marked error
locations in the model are reachable. This can be decided by a traversal of the
data-flow graph. Redundant statements are eliminated, sparing the time of suc-
cessor state calculation in such cases. We formulate our algorithm for abstract



On-the-fly Cone-of-Influence Reduction for Concurrency 3

Process p1

x := 1
y := 1
assert(y=1)

Process p2

y := x
x := 0

(a) Simple example

initially: x:=y:=z:=0
Process p0

repeat N times:
z := z+2*y

if z mod 2 = 0:
x := 0

else:
x := 1

Processes p1 − pN

y := y+1

Processes pN+1−p2N

y := y*y

finally: assert(x*y=0)

(b) Example with possible exponential gain

Fig. 1: Motivational examples for demonstration

state space exploration and exploit information about the current abstraction to
reduce the number of edges in the data-flow graph.

To further motivate our approach, it is possible to achieve exponential gains
in the number of evaluated statements by using our novel algorithm. Consider the
example from Figure 1b with 2N+1 processes. The safety of the program can be
proven with abstraction by only tracking the predicates z mod 2 = 0 and x = 0
about our variables: z mod 2 = 0 is an invariant of the loop of p0, so x gets 0 that
satisfies the assertion. Processes p1−p2N have 2N ! interleavings not considering
the statements of the loop of p0; together there are even more interleavings.
This is indeed a difficult task for verifiers: we tried state-of-the-art tools (such
as Ultimate [38] and Dartagnan [41]), and they cannot solve the problem for
N > 4 within a reasonable time. However, our algorithm notices that we do not
track any information about y, so the results of statements writing y are not used
in this abstraction: so, our approach eliminates all of these statements (2N !∗2N
statements exactly). Our approach also enables existing partial order reduction
algorithms [1,3,30] to reduce the number of explored interleavings exponentially
that otherwise would have to explore all interleavings. Our algorithm achieves
this by eliminating the source of dependency between statements.

Contributions. We take the base idea of the cone-of-influence reduction one
step further by deciding on-the-fly during state space exploration whether the re-
sult of a statement can be used later. We present a novel algorithm for identifying
redundant statements using an abstract dynamically updated data-flow graph.
Furthermore, we discuss the necessary additions in an iterative abstraction-
refinement verification scheme (namely, CEGAR). We have implemented and
evaluated our algorithm in the abstraction-based model checking tool Theta [48].

2 Related Work

Several works aim to simplify the model by eliminating redundant model ele-
ments based on data-flow analysis [10, 28, 33, 36, 42, 43]. These techniques only
statically analyze and simplify the input model which is limited compared to our



4 C. Telbisz et al.

on-the-fly data-flow analysis. These static approaches have the advantage that
they have to be executed only once before the state space exploration while our
algorithm is performed at each successor state calculation. On the other hand,
our experiments in Section 5 show that our approach does not have a signifi-
cant overhead, so it is worth running our algorithm several times (i.e., once for
each state transition during the state space exploration) to eliminate further
statements that static techniques cannot eliminate.

There are dynamic program slicing techniques as well [33, 39]. However, dy-
namic, in those contexts, means that these techniques use actual input values or
already discovered error traces for slicing [5]. These techniques do not take ad-
vantage of the local states and interleaving of threads (most of them formulated
for sequential programs [39]) which is the basis of our approach.

Many algorithms have been developed for model checking concurrent pro-
grams that reduce the number of explored thread interleavings such as par-
tial order reduction or maximum causality reduction [1, 4, 37]. Some of these
techniques leverage abstraction-related information to achieve further reduc-
tion [8, 29, 30], but they do not use a complex data-flow analysis to further
reduce the number of dependent program statements. Some other works per-
form dynamic data-flow analysis in various ways to improve the reduction po-
tential of these techniques [4,6,20,37,45], though they only use data-flow analysis
to reduce the number of explored interleavings and not to simplify statements.
These techniques take explored traces and discover redundant statements within
these traces: they use this information to explore even less interleavings (e.g.,
by ignoring these statements when calculating a dependency relation [6]). The
works [4, 37] discover causality connections and build causality constraints be-
tween statements (events) of a trace and simplify these formulae by eliminating
irrelevant statements which is a similar concept to our approach. However, they
only use this idea to simplify these constraints, but they still completely explore
traces first. So our approach could achieve further reduction in these cases as
well. In other words, these works aim to reduce the size of the explored state
space whereas our purpose is to accelerate the exploration of a (reduced) state
space by skipping the evaluation of certain program statements. Our algorithm
is orthogonal to these techniques and could be applied on top of them to further
improve the performance by eliminating further model elements.

The combination of abstraction-based and slicing techniques have already
been investigated [18, 27]. Those approaches enhance the refinement step of the
counterexample-guided abstraction refinement approach by slicing infeasible er-
ror traces found during state space exploration. On the other hand, our technique
works in the state space exploration phase of CEGAR. Therefore, the two tech-
niques are orthogonal and have a different purpose. We include some remarks
about the consistent use of our technique with refinement methods in Section 4.3.

Dynamic pruning and a so-called dynamic cone-of-influence algorithm is also
introduced in [21]. However, it is just a coincidental name collision: they use it
in the context of fault tree analysis to lazily construct fault trees and compute
minimal cut sets. It has nothing to do with concurrent programs.



On-the-fly Cone-of-Influence Reduction for Concurrency 5

3 Preliminaries

This section introduces the basic concepts and notions regarding abstract state
space exploration necessary for the presentation of the proposed technique.

3.1 Computation Model

In this paper, we assume a computation model of concurrent programs where
processes (threads) communicate via shared variables. We assume a sequen-
tial consistency memory model. Though it would be easy to incorporate extra
features into the model (such as heap memory, dynamic thread creation or ter-
mination, and synchronization primitives), we strive to keep our presentation
simple and skip these details. Our implementation for the evaluation naturally
supports these features. We represent concurrent programs by control-flow au-
tomata (CFA) [15]: each process has its own (conventional) CFA representation.

Definition 1. A multi-threaded CFA is a tuple (V, P ), where

– V is a set of (global) variables,
– P is a set of processes. A process is a tuple p = (L, l0, A,E), where:

• L is a set of control locations with l0 ∈ L as the initial location,
• A is a set of statements,
• E ⊆ L×A×L is a set of transitions. A transition is a directed edge with

a source control location, a target control location, and one statement.

Each variable v ∈ V has a domain Dv (the possible values for v), and possibly
an initial value from its domain. A statement can be a deterministic assignment
(v = expr), a non-deterministic assignment (havoc v) where the new value of v
can be anything from its domain, or a guard condition ([cond]). For the verifica-
tion of reachability properties, some CFA locations are marked as error locations:
the program is safe if no error location can be reached by any of its processes.
We define transition systems (state spaces) as follows:

Definition 2. A transition system is a tuple (S,A, T, I), where S is a set of
states, A is a set of actions, T ⊆ S ×A× S is a set of transitions, and I ⊆ S is
a non-empty set of initial states.

In this paper, actions correspond to statements as introduced above. An
action α is an outgoing action from a state s if there is a transition (s, α, s′) ∈ T
for some s′ ∈ S. We use the following notations:

– α(s) = {s′ ∈ S : ∃(s, α, s′) ∈ T},
– outgoing(s) denotes the set of outgoing actions from s,
– vars(α) denotes the set of variables referenced by α,
– written(α) and read(α) is the set of variables written/read by α, respectively.



6 C. Telbisz et al.

The state space of a program is a transition system where a state stores
the CFA locations of all processes and the values of all variables. An action
of a transition corresponds to a statement of a single process (processes step
asynchronously). We use the Greek alphabet for actions, and we write pα for
the process of action α. Note that written(α) has a single item for deterministic
and non-deterministic assignments, and it is an empty set for a guard condition.
We denote the control location of process p in state s by s(p), and the value
of variable v in state s by s(v). We define an expression function for a state s
based on the values of variables in s: expr(s) :=

∧
v∈V (v = s(v)). By w = t1...tk,

we denote a transition sequence (or trace), and we use the following for the
concatenation of transition sequences or transitions: w.v. We also refer to action
sequences as traces. A state is an error state if any of the processes is in an error
location in the state. A state s′ is said to be reachable from a state s if there
is a trace starting from s and ending in s′. If we have a trace from a state that
leads to an error state, we call this trace an error trace.

3.2 Abstraction

An abstraction can be defined through an abstract domain, a precision, and a
transfer function [14].

Definition 3. An abstract domain is a tuple (S, expr), where S is a set of ab-
stract states1, and expr : S 7→ FOL is an expression function mapping an ab-
stract state to a first-order logic formula describing the state.

We assume that CFA locations of all processes are explicitly tracked in all
abstract domains (and refer to the location of process p in a state s by s(p) as
introduced earlier). An abstract state s represents a concrete state c denoted
by c |= s if c(p) = s(p) for each process p, and expr(c) implies expr(s). In our
notation, we use s for abstract states and c for concrete states. An abstract state
is an error state if any process is in an error location.

An abstract trace w = α1...αk from the abstract state s0 (s0
α1−→ ...

αk−−→ sk)
is feasible if w is also a trace in the concrete state space (c0

α1−→ ...
αk−−→ ck)

with ci |= si; otherwise, w is spurious from s0. The abstract state space over-
approximates the behavior of the concrete state space: if there is a trace w from
a concrete state c, then w is also a trace in the abstract state space from all
abstract states s with c |= s [14].

The precision (Π) describes which aspects the abstraction keeps, defined dif-
ferently for each abstract domain. The variables of a precision vars(Π) are the
variables that may appear in abstract state expression formulae. As a conse-
quence, the abstraction tracks no information about variables in V \ vars(Π).
The transfer function calculates the successor states of an abstract state with
respect to a statement and a precision.

1 Abstract states are usually defined as a semi-lattice with a partial order [14], but we
do not need those details for this paper, so we simplify.



On-the-fly Cone-of-Influence Reduction for Concurrency 7

Two frequently used abstract domains are explicit-value [17] and predicate
abstraction [31]. In explicit-value abstraction, an abstract state is defined by the
CFA locations of processes and an abstract variable assignment. The precision
is the subset of variables Π ⊆ V that are explicitly tracked in this abstraction,
therefore vars(Π) = Π, here. Values of other variables are unknown in all ab-
stract states. The expression function of an abstract state is defined similarly
to concrete states in Section 3.1: variables whose values are unknown in a state
are simply omitted. The result of the transfer function is based on the strongest
post-operator under abstract variable assignment [17]. In predicate abstraction,
an abstract state is defined by the CFA locations of processes and a combination
of first-order logic (FOL) predicates [31]. The precision is a set of FOL predi-
cates (e.g., x > 0, y = z) that are tracked in the abstraction; vars(Π) is the set
of variables appearing in the tracked predicates. The expression function of an
abstract state is the combination of FOL predicates that describes the state [31].

4 Statement Reduction during Dynamic Analysis

This section presents a method for simplifying the statement of an action before
calculating the successors of the current state with respect to the action. Ba-
sically, when there is no possible interleaving of threads from the current state
where the value of a written variable is read by any relevant statement regarding
the verified property, we do not evaluate the expression writing the variable.

4.1 Data-Flow Graph with Precision

First, let us formalize the connection between actions of the program when one
action uses the result of another action.

Definition 4. Let α, β be actions, and Π be the precision of the abstraction. We
say that β observes α with precision Π if written(α) ∩ read(β) ∩ vars(Π) ̸= ∅.

An action α is transitively observed by an action β in a trace w = w1...wn

if there is a sequence of indices i1, ..., im (1 ≤ i1 < ... < im ≤ n) such that wij

is observed by wij+1 for each 1 ≤ j < m, and wi1 = α, wim = β.

Note that the sequence of indices in the definition does not necessarily contain
adjacent indices (i.e., ij+1 is not necessarily ij + 1): for example, in the trace
x = 1, z = 1, y = x, the last action transitively observes the first with indices
i1 = 1 and i2 = 3 in the definition. Each action α transitively observes itself as
the trace consisting of the single action α fulfills the conditions of the definition.
Also note that this is an over-approximation of possible data-flow between α
and β, since it is possible that a variable is rewritten before it is observed (e.g.,
actions x = 1, x = 2, y = x in this order).

We build an abstract data flow graph whose nodes are statements of the
program and a directed edge represents an observation between the connected
nodes, i.e., the target action observes the source of the edge. There are two types
of edges: in-process (Direct) and inter-process (Indirect) observation.



8 C. Telbisz et al.

x = 1

L0

y = 1

L1

[y = 1] [y ≠ 1]
L2

final error


y = x

L3

x = 0

L4

L5

x = 1

y = 1

[y = 1] [y ≠ 1]

y = x

x = 0

x = 1

y = 1

[y = 1] [y ≠ 1]

y = x

x = 0

Process p1 Process p2

Fig. 2: CFA of two processes and data-flow graphs with different precisions

Definition 5. An abstract data-flow graph is a tuple G = (A,D, I,Π) where:

– A is the set of actions of the program (the nodes of the data flow graph),
– D ⊆ A×A is the set of direct observation edges: (α, β) ∈ D if β observes α

with Π, pα = pβ, and β is reachable from α in the CFA of their process,
– I ⊆ A×A is the set of indirect observation edges: (α, β) ∈ I if β observes α

with Π and pα ̸= pβ.2

The data-flow graph can be precomputed for the state space exploration and
the same data-flow graph can be used for the full state space exploration without
the need for updating it as long as the precision of the abstraction is the same.
To collect direct observation edges, the CFA is traversed from each action α,
and for each action β reachable from α, (α, β) is added to D if β observes α. For
inter-process observation, we simply iterate over the actions of all other processes
and add an indirect observation edge wherever needed. So the data-flow graph
can be built in polynomial (quadratic) time in the number of CFA edges.

Example 1. Let us have the simple program from Figure 1a: its CFA is shown in
Figure 2. The figure also shows two abstract data-flow graphs: the upper one with
a precision where some information is tracked about both x and y (vars(Π) =
{x, y}); below, we have no information about x (vars(Π) = {y}). Therefore, no
edges start from actions assigning x in the second graph. Solid edges are direct
observation edges, dashed edges represent inter-process observations.

4.2 Simplifying Statements On-the-Fly Based on Data-Flow

Let Π be the precision of the abstraction, and G = (A,D, I,Π) the computed
abstract data-flow graph. Let s be a state, α ∈ outgoing(s): our goal is to decide
whether α can be transitively observed later during the program execution in a
relevant way. We target reachability properties, so relevant actions are the actions
2 On the implementation side, when threads can be created and terminated dynam-

ically, several threads can have the same CFA process. In that case, inter-process
observation edges may exist between actions of the same CFA process.



On-the-fly Cone-of-Influence Reduction for Concurrency 9

with guard conditions since reachability of error locations of the CFA can only
be blocked by conditional statements. We will refer to these relevant actions as
real observers. Real observers are colored in Figure 2. Thus, the evaluation of α
can be skipped if there is no trace from the current state where a real observer
transitively observes α3. This can be decided using the data-flow graph. To
formalize this idea, we introduce the following definitions:

Definition 6. Let s be an abstract state and p be a process. Let reachable(s, p)
denote the set of actions such that α ∈ reachable(s, p) if there is an abstract trace
w in the abstract state space from s with α ∈ w and pα = p.

Technically, reachable(s, p) is the set of actions that could be executed by p
at some point after s. Intuitively, if α is transitively observed by an action β in
a trace starting from the current state s, then there is a path in the data-flow
graph from α to β only passing through graph nodes (actions) which can still be
reached from s by one of the processes. Formally, we define conditions for the
enabledness of the data-flow graph edges:

Definition 7. Let s be an abstract state, and G = (A,D, I,Π) an abstract data-
flow graph.

– An edge (α1, α2) ∈ D is enabled in s if α1, α2 ∈ reachable(s, p) for some
process p.

– An edge (α1, α2) ∈ I is enabled in s if α1 ∈ reachable(s, p1) and α2 ∈
reachable(s, p2) for some processes p1 ̸= p2.

Rephrasing the previous paragraph: if there is a trace from s where α is
transitively observed by an action β, then there is a sequence α1, ..., αn such that
α1 = α, αn = β, (αi, αi+1) ∈ D ∪ I for each 1 ≤ i < n, and (αi, αi+1) is enabled
in s. Using the definition, deciding the enabledness of a data-flow graph edge
amounts to answering reachability questions in the state space (see Definition 6)
which is also the original purpose of the verification of reachability properties:
seemingly, the problem has not become easier. However, reachable(s, p) can be
over-approximated by checking reachability in the CFA of the program4.

Example 2. Let us continue our example from Figure 2 with a precision Π such
that vars(Π) = {x, y} (i.e., the upper data-flow graph in Figure 2). In the initial
state where both processes are in their initial locations (L0 and L3), all actions
may be reachable in the future by one of the processes since we over-approximate
reachability in the state space by reachability in the CFA. Thus, all data-flow
graph edges are enabled, so there is a path of enabled data-flow graph edges
from both outgoing actions x = 1 and y = x to a real observer (e.g., to [y = 1]).

3 Note that based on the reflexivity of the transitive observation relation, conditional
statements are never simplified.

4 This over-approximation would be too coarse for the original reachability question
of the verification in most cases. However, it can be effectively used for our purposes
to answer reachability questions on a lower level.



10 C. Telbisz et al.

However, if we have a state where the processes are in locations L0 and L4, then
y = x can never be reached from this state, so all data-flow graph edges leaving
or targeting y = x are disabled. That is, there is no path from x = 1 and x = 0
to a real observer in this state, so these actions are not transitively observed by
a real observer, and thus, do not have to be evaluated from this state.

This example also shows a great advantage and novelty of our algorithm
over existing cone-of-influence and program slicing techniques: some statements
(x = 1 in our case) can be removed in certain states even though the same
statement may be important and needs to be preserved in other states.

Using an adequate data structure, edge enabledness in the data flow graph
can be over-approximated in constant time using CFA reachability information.
For indirect edges, CFA reachability information can either be stored in a 2D
array (with constant time indexing) or a more memory-efficient, but slightly more
over-approximating approach based on strongly connected components can be
used (by storing the CFA strongly connected component id number for each CFA
edge and comparing these ids on-the-fly). All direct observation edges reachable
in G from an action α ∈ outgoing(s) are enabled based on Definition 7.

For each action α ∈ outgoing(s), we traverse the data-flow graph from α in
the way introduced above. If a real observer is reached, then the value produced
by α is used (or at least may be used, c.f., the applied over-approximations),
so we evaluate α properly to calculate the successor states α(s). However, if
no real observer is reached, then the value is unused, making α unnecessary to
evaluate. Instead, the successor state s′ can be the state differing from the current
state s only in the location of the process of α: s′(pα) is the target location of
α. Specifically, the following method is used to determine the successor states
when there is no real observer of α: for the single variable v ∈ written(α), if
v ∈ vars(Π), the original statement assigning a new value to v is replaced by
a havoc v statement; if v /∈ vars(Π), the original statement is removed (more
precisely replaced with a no operation statement that has no effect). Using havoc
on the variables tracked in the current abstraction is necessary for the refinement
step of CEGAR (see Section 4.3 for more details).

Algorithm 1 summarizes the presented method of statement simplification
based on dynamic data-flow analysis. Line 9 corresponds to the case when sim-
plification is not possible (α has a real observer). Lines 12-13 are applied when α
does not have a real observer but the written variable of the action is tracked in
the abstraction: so α is replaced by a havoc statement. When we have track no
information about the written variable in the current abstraction, α is completely
eliminated (only the location is updated) in lines 15-17.

Theorem 1 proves that using Algorithm 1 for state space exploration yields
correct results, that is, it reaches an error state whenever an error state is reach-
able with a feasible trace in the original state space. By original state space,
we mean the abstract state space explored without the introduced statement
simplification (i.e., for each α ∈ outgoing(s), the successor states α(s) are all
explored).



On-the-fly Cone-of-Influence Reduction for Concurrency 11

Algorithm 1: State Space Exploration with Statement Simplification
Input: s0, Π /* initial state, precision */
Output: verdict /* safe/unsafe */

1 G← construct abstract data-flow graph with Π
2 waitlist← {s0}
3 while waitlist ̸= ∅ do
4 s← remove an item from waitlist
5 if s is an error state then return unsafe
6 else
7 foreach α ∈ outgoing(s) do
8 if ∃ path in G of enabled edges in s from α to a real observer then
9 successors← α(s)

10 else
11 if written(α) = {v} and v ∈ vars(Π) then
12 α′ ← havoc v
13 successors← α′(s)

14 else
15 s′ ← s
16 s′(pα)← target location of α
17 successors← {s′}
18 waitlist← waitlist ∪ successors

19 return safe

Theorem 1. Algorithm 1 returns an unsafe verdict whenever an error state is
reachable in the concrete state space.

Proof. A reachable error state in the concrete state space means that the original
abstract state space contains a feasible abstract error trace. We prove that if
we take successors instead of α(s) in a step of the algorithm, then if there is
a feasible abstract error trace from s starting with α, there is also a feasible
abstract error trace from some s′ ∈ successors. We have the following cases:

1. α is transitively observed by a real observer.
Then α is not simplified, so successors = α(s). Naturally, if there is a feasible
abstract error trace from s in the form α.w, then w is a feasible abstract error
trace from at least one element of successors = α(s).

2. α is not observed transitively by a real observer, and v /∈ vars(Π) for the
single item v ∈ written(α).5
In this case, α practically has no effect since no information is tracked about
v in the current abstraction. So an assignment of v only performs a location
update for pα. This is exactly how s′ defined in lines 15-16, so successors =
α(s) in this case, as well. Similarly to case 1, there is a feasible abstract error
from at least one element of successors = α(s).

5 Note that written(α) has exactly one item when α is not transitively observed by a
real observer because α must be an assignment then.



12 C. Telbisz et al.

3. α is not observed transitively by a real observer, and v ∈ vars(Π): α is
replaced by a havoc statement.
A feasible abstract error trace α.w from s implies that there is a concrete state
c with c |= s such that α.w is a trace from c to a concrete error state. Note
that an unobserved α can be a deterministic or non-deterministic assignment.
If we have a non-deterministic assignment, we are back in the previous case
since practically, α is not replaced (a havoc replaced with a havoc on the same
variable). So we consider α as a deterministic assignment, that is α(c) = {c′}.
Thus, w is an error trace from c′. Now, if we take α′ instead of α, then
c′ ∈ α′(c) since a havoc means that v can get any value from its domain
including the value c′(v) originally assigned by α. Based on the abstraction,
for each concrete state ĉ ∈ α′(c) there is an abstract state ŝ ∈ α′(s) such that
ĉ |= ŝ. Therefore, for c′ ∈ α′(c), there is an abstract state s′ ∈ α′(s) with
c′ |= s′. This way, w being an error trace from c′ implies that w is a feasible
abstract error trace from s′ ∈ successors = α′(s).

As the property proven above is preserved in each exploration step, it follows
by induction that if a feasible abstract error trace is available from the initial
state, then there is a feasible abstract error trace in the state space explored by
Algorithm 1, as well, which proves the theorem.

4.3 Statement Simplification with CEGAR

Counterexample-Guided Abstraction Refinement (CEGAR) [22] is an abstraction-
based model checking algorithm, starting from a coarse abstraction and itera-
tively refining it until it can prove or disprove the analyzed property. Its core
is the CEGAR-loop consisting of the abstractor and the refiner. The abstractor
builds the abstract state space over an abstract domain with a given precision.
Since this is an over-approximation of the original concrete state space, if no ab-
stract error state is reachable, the concrete model is also safe. On the other hand,
when an abstract error is reachable, the refiner checks whether it is a feasible
or a spurious abstract counterexample. The counterexample is an alternating
sequence of abstract states and actions from the initial abstract state to an ab-
stract error state. The refiner checks whether this trace is feasible or not, that is,
whether there is a concrete variable assignment for each state of the trace that
does not contradict the abstract state expressions and the actions of the trace. If
the abstract trace is feasible, the program is unsafe. If the trace is spurious, the
precision is refined (i.e., the refiner provides a new refined precision that could
better establish the safety or reveal the faulty behavior of the program). The
abstract state space is built with this refined precision in the next iteration.

Our proposed algorithm can be used by the abstractor of CEGAR for abstract
state space exploration. However, it is important that a potential counterexample
provided to the refiner must contain the original actions even if our algorithm
simplified them during the state space exploration. For a reason, consider a
program with a single process which is Process p1 from Figure 2, but let the
action from L1 to L2 be y = x. Let our precision only track information about



On-the-fly Cone-of-Influence Reduction for Concurrency 13

x: vars(Π) = {x}. An error state is reachable in the abstract state space with the
clearly spurious trace (x = 1, y = x, [y ̸= 1]). However, our algorithm simplifies
x = 1 and y = x since they are not observed by a conditional action with this
precision. If the refiner only sees the simplified actions in the trace, i.e., (havoc
x, no operation, [y ̸= 1]), the contradiction cannot be spotted. Concluding that
the counterexample is feasible, it would give a wrong unsafe verdict (instead of
spotting the contradiction and providing a better refined precision).

Our algorithm presented previously can also be used in verification algorithms
other than CEGAR. In such a case, it may be possible to drop lines 11-14 of
Algorithm 1 and always use lines 15-17 to define the successor state when α is not
observed transitively by a real observer. However, we focus on CEGAR as the
base algorithm in this paper, making the havoc necessary when the assignment
of a variable in the precision is simplified. If the successor state is defined as
in lines 15-16 instead of using a havoc, the refiner may see a contradiction. For
example, assume that the value of variable x is explicitly tracked in a CEGAR
iteration, and the abstractor finds a counterexample trace. The trace contains
a state s where x = 0, and the next action α assigns 1 to x. However, our
algorithm noticed that α cannot be transitively observed by any real observer,
so it skipped the evaluation of the statement of α. Based on lines 15-16 of the
algorithm, the value of x would be the same (namely 0) in the state s′ after α in
the trace. Then, the refiner finds a contradiction here as the value of x cannot
be 0 after an action that assigns 1 to x (we have seen in the previous paragraph
that the counterexample must contain the original actions). On the other hand,
the precision could not be refined based on this misleading contradiction, and
the CEGAR algorithm could get stuck in endless iterations.

Applying a havoc statement instead of the unevaluated assignment expres-
sion overcomes this problem, as the havoc statement covers the behavior of the
original assignment whatever value it would assign. Going back to our example,
the havoc statement would erase the value of x from s′, so it is not a contradict-
ing state after α. Evaluating the havoc statement is still a simple task, so it is
still worth replacing the original assignments with it.

It is worth mentioning that our algorithm cannot introduce new spurious
counterexamples and degrade performance this way. Intuitively, guard condi-
tions cannot get enabled as a side-effect of our algorithm since Algorithm 1 only
simplifies statements that are not observed transitively by any conditional state-
ment. Thus, the evaluation of guard conditions is not affected, so new (spurious)
counterexamples cannot emerge. As for originally feasible counterexamples, they
remain feasible with our algorithm as feasible traces are always available in the
abstract state space explored by our algorithm based on the proof of Theorem 1.

5 Experimental Evaluation

In this section, we evaluate the efficiency of our algorithmic contributions. The
goal of our experiment is to evaluate the performance of our proposed dynamic
statement simplification algorithm. We refer to our novel algorithm as a dynamic



14 C. Telbisz et al.

cone-of-influence-based statement simplification algorithm (or DCOI for short) in
our experiments. We compare our algorithm to a baseline using static cone-of-
influence (SCOI) to see how much further reduction is achieved (that is when
DCOI and SCOI are both enabled). Since DCOI can do the job of SCOI so to
say (and thus, completely replace SCOI), it is also meaningful to investigate the
performance with only DCOI while SCOI is disabled. We are interested in different
abstract domains, therefore we investigate the effect of our proposed algorithm
in two abstract domains frequently used in state-of-the-art verification tools [11]:
explicit-value abstraction (later EXPL) [17] and (Cartesian) predicate abstraction
(later PRED) [9].

We implemented our algorithm as an open-source extension of the Theta
verification tool [48] which already had a built-in CEGAR algorithm and a static
cone-of-influence preprocessing step, and had prior support for multi-threaded C
programs including a partial order reduction algorithm [8]. We also compare our
results to other state-of-the-art verifiers using abstract state space exploration.

In our experiments, we use a static partial order reduction (POR) algo-
rithm [2, 8] during the state space exploration in a way that POR is applied
first as a filter on the outgoing actions of states, and then the DCOI technique
is used to simplify the subset of outgoing actions selected by POR. Since the
applied static POR only takes actions into account that might be executed later,
the soundness of the POR algorithm is not affected by our proposed algorithm
(as the effect of DCOI is materialized in the already explored part of the state
space).

Research Questions To evaluate the presented algorithm, we aim to answer
the following research questions concerning metrics relevant to it:

RQ1 What proportion of statements can be simplified or completely eliminated
using the proposed algorithm?

RQ2 How is the time of successor state calculation affected by our algorithm?
RQ3 How is the overall verification performance affected by the algorithm?
RQ4 What practical performance improvement can we observe on programs

where theoretically exponential gain is expected?

Experimental Configuration In our experiments, we executed different con-
figurations of Theta over a set of input programs written in C from the con-
currency safety reachability category benchmark suite6 of SV-COMP [11] (715
tasks) that is parsable by Theta (598) for RQ1-RQ3 and a direct implementa-
tion of Figure 1b for RQ4 with N = 20≤i≤7. We executed 6 configurations on the
SV-COMP benchmarks: both abstract domains (EXPL, PRED) with the three dif-
ferent cone-of-influence methods (SCOI, SCOI+DCOI, DCOI). The benchmark tests
were executed on virtual machines with Intel Core (Haswell) processors, 2 dedi-
cated CPU cores were allocated to each task. Each verification task had a time
6 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/2fa025c8cb683e5991b2bbdb057e4cb328700dc0


On-the-fly Cone-of-Influence Reduction for Concurrency 15

limit of 900 seconds (1800 seconds for RQ4) and a memory limit of 15GB. We
used a sequence interpolation-based refinement strategy for the refinement step
of CEGAR, and depth-first state space exploration with thread-safe large-block
encoding and a static abstraction-based partial order reduction algorithm [8]
in the abstraction phase. We used atoms as the basis of predicate splitting for
the predicate domain; and we used a maximum number of enumerated successor
states (maxenum) of 1 for the explicit domain [32]. Our backend SMT solver was
Z3. For the exponential gain program, we used the predicate abstract domain
with an initial precision obtained by extracting branching conditions from the
program; and we also applied a simple static partial order reduction algorithm [2]
after applying DCOI (the same POR algorithm is used when DCOI is disabled for
a fair comparison).

5.1 Experiment Results

In the concurrency safety benchmark suite, Theta was able to parse 602 pro-
grams. No configuration provided incorrect results (where the verdict reported
by Theta differs from the expected result). Table 1 shows the results for differ-
ent metrics aggregated by configuration. For a fair comparison, the aggregated
values are calculated over the common subset of correctly solved tasks by ab-
stract domain: a common subset of 332 tasks was solved with the configurations
using explicit-value abstraction, and 350 with predicate abstraction.

The simplified by DCOI column shows the average proportion of simplified
statements (including statements replaced by havoc and completely eliminated
statements) simplified by DCOI compared to all statements. The successor cal-
culation and CPU time columns are the sum of successor state calculation and
CPU times of commonly solved tasks.

The results confirm the reduction potential of our algorithm: configurations
using DCOI greatly outperform (depending on the abstract domain) the baselines
without DCOI in terms of both successor state calculation and overall verification
performance. It is also in line with our expectations that using DCOI without SCOI
leads to slightly better performance since DCOI can also eliminate the statements
removed by SCOI with a minor overhead while the time of SCOI is completely
spared. Let us interpret the results by answering the research questions:

RQ1 DCOI simplifies 19.6% of all statements on average (14% completely
eliminated, while 5.6% replaced by havoc with explicit-value abstraction; 14.4%
and 5.2% respectively with predicate abstraction). This confirms the relevance
of our method: a significant subset of statements is unnecessary in certain thread
interleavings for verifying the given property of the program.

RQ2 Our algorithm greatly reduces the time of successor state calculation as
testified by the results in Table 1: by 29.9% with explicit abstraction and 31.8%
with predicate abstraction. A significant part of successor state calculation is
taken by SMT-solvers solving SMT problems (especially when using predicate
abstraction). Thus, the overall system load is significantly decreased by reducing
the SMT problem solving time.



16 C. Telbisz et al.

domain coi simplified
by DCOI

successor
calculation

CPU
time

solved
tasks

EXPL
SCOI 0% 1254s 5581s 332

SCOI+DCOI 19.5% 880s 5548s 332
DCOI 19.6% 879s 5376s 334

PRED
SCOI 0% 22168s 40496s 352

SCOI+DCOI 19.7% 15289s 35102s 358
DCOI 19.6% 15118s 34582s 358

Table 1: Different metrics of the evaluation

RQ3 Overall performance is also improved (see CPU time in Table 1), espe-
cially for predicate abstraction: DCOI reduces the overall CPU time compared to
the baseline by 3.7% using explicit abstraction, and by 14.6% using predicate
abstraction. It was our expectation to have better improvement with predicate
abstraction since it is more costly to compute which tracked predicates (or their
negations) are entailed by the previous abstract state and the current action.
Thus, successor state calculation takes a greater portion of the verification in
predicate abstraction leading to a greater impact of our algorithm. The num-
ber of solved tasks is only slightly increased (i.e., the number of tasks where
the baseline configuration hit the timeout, but our approach enabled Theta to
verify the program within the time limit) probably because the complexity of
input tasks is not linearly increasing. The overhead of our algorithm (the time of
building and traversing the data-flow graph) is not huge though not completely
negligible: 197 seconds and 206 seconds for SCOI+DCOI and DCOI, respectively,
aggregated for all tasks with explicit-value analysis which is 3.6% and 3.8% of
all CPU time. Similarly, our algorithm ran for a total of 342 and 345 seconds
with predicate abstraction taking 1% of all CPU time in both cases.

RQ4 Even though the baseline used the same static COI and the same partial
order reduction algorithm, it could only solve the three smallest tasks in the set
(up to N = 4) within the time limit, whereas DCOI was able to verify 8 tasks,
up to N = 128 as seen in Figure 3. Indeed, our algorithm scales very well in
some cases. We tried to solve these tasks with state-of-the-art verifiers, as well.
Even the best tools in SV-COMP 20247 (Dartagnan and Ultimate GemCut-
ter, winner and second place in the concurrency category of SV-COMP’24 [11])
cannot solve these tasks for N > 4 within the time limit which highlights the
potential of our algorithm.

Comparison with the state-of-the-art. We also compare the average perfor-
mance of our solution to other state space exploration algorithms in state-of-
the-art verifiers. We select the best performing verifiers from SV-COMP 2024
concurrency category [11] that use some kind of abstract state space explo-
ration algorithm. Two such state-of-the-art tools are CPAchecker [7] and

7 The official results of SV-COMP 2025 are not published at the time of writing.



On-the-fly Cone-of-Influence Reduction for Concurrency 17

0 1 2 3 4 5 6 7
1

10

100

1,000

i

T
im

e
(s

)

SCOI
SCOI+DCOI

Fig. 3: Execution time given i for N := 2i in Figure 1b

PIchecker [47]. Other successful tools in SV-COMP are either bounded model
checkers (such as Dartagnan [41], Deagle [34], and CSeq [25]) that would
be unfair choices for comparison with a complete model checking algorithm;
or use a conceptually different trace abstraction algorithm (such as Ultimate
Automizer [35], GemCutter [38], and Taipan [26]); or use some advanced
algorithm or tool selection strategies without implementing own analyses (such
as PeSCo [46], and Graves [40]).

We executed the two verifiers on the same SV-COMP tasks, on the same hard-
ware with the same limits. CPAchecker uses a standard state space exploration
technique for multi-threaded programs combined with a BDD analysis [13] and
achieved to solve 346 tasks correctly8. PIchecker is built on CPAchecker and
has multiple analyses for concurrent software [47]. One that uses CEGAR and
Craig interpolation could verify 246 tasks while its main method, a BDD anal-
ysis with an elaborate partial order reduction algorithm could verify 388 tasks.
Our solution solving 358 tasks thus ranks second among these similar analyses.
While our contribution does not bring Theta to the first place among these
tools, it reduces the advantage of PIchecker. As a reference, the most solved
tasks by a single tool was 452 in the SV-COMP 2024 concurrency reachability
category [11], though that tool used bounded model checking.

5.2 Threats to Validity

Internal validity. We used BenchExec [19] to ensure the accuracy of our exper-
iments executed on virtual machines in our university’s cloud computing plat-
form. External factors such as shared resources may have influenced the results.

External validity. The SV-COMP benchmark suite is considered a de facto
standard for academic benchmarking in software verification. Theta can only

8 CPAchecker also has a predicate analysis for concurrent software [16] but the
algorithm is a bit dated and this analysis can only verify 159 tasks.



18 C. Telbisz et al.

parse a limited subset of SV-COMP concurrent benchmark programs which fur-
ther reduces generalizability. However, there might be more redundant model el-
ements in real-world software than in the simplified programs of the SV-COMP
benchmarks, making our technique disadvantaged on the benchmark set.

Construct validity. Evaluation metrics were carefully chosen to accurately
describe the performance of our algorithm: both end-user statistics (such as
CPU time, number of solved tasks) and backend-related information (such as
the ratio of simplified statements, successor state calculation time) were used.

6 Conclusion

In this paper, we have presented a novel statement reduction algorithm based on
dynamic data-flow analysis to aid abstract state space exploration of concurrent
programs. Our method is based on a similar idea to cone-of-influence algorithms,
however, our algorithm performs a more fine-grained analysis resulting in more
extensive reduction of model elements. We have proven its correctness and dis-
cussed its integration into the abstraction-based verification algorithm CEGAR.
The evaluation of the algorithm shows that our approach can simplify or com-
pletely eliminate a great proportion of statements which leads to a significant
improvement in both successor state calculation time and overall verification
time, especially in cases where successor state calculation takes a significant
proportion of verification time, such as in the case of predicate abstraction.
Therefore, the presented algorithm is worth implementing in a model checking
tool that verifies concurrent software.

References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. pp. 373–384. ACM (2014). https://doi.org/10.1145/2535838.2535845

2. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Comparing Source Sets and
Persistent Sets for Partial Order Reduction. Lecture Notes in Computer Science,
vol. 10460, pp. 516–536. Springer (2017). https://doi.org/10.1007/978-3-319-63121-
9_26

3. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Source Sets: A Foundation
for Optimal Dynamic Partial Order Reduction. J. ACM 64(4), 25:1–25:49 (2017).
https://doi.org/10.1145/3073408

4. Agarwal, P., Chatterjee, K., Pathak, S., Pavlogiannis, A., Toman, V.: Stateless
model checking under a reads-value-from equivalence. Lecture Notes in Computer
Science, vol. 12759, pp. 341–366. Springer (2021). https://doi.org/10.1007/978-3-
030-81685-8_16

5. Agrawal, H., Horgan, J.R.: Dynamic program slicing. pp. 246–256. ACM (1990).
https://doi.org/10.1145/93542.93576

6. Aronis, S., Jonsson, B., Lång, M., Sagonas, K.: Optimal Dynamic Partial Order
Reduction with Observers. Lecture Notes in Computer Science, vol. 10806, pp.
229–248. Springer (2018). https://doi.org/10.1007/978-3-319-89963-3_14

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1145/3073408
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1145/93542.93576
https://doi.org/10.1007/978-3-319-89963-3_14


On-the-fly Cone-of-Influence Reduction for Concurrency 19

7. Baier, D., Beyer, D., Chien, P., Jankola, M., Kettl, M., Lee, N., Lemberger, T.,
Rosenfeld, M.L., Spiessl, M., Wachowitz, H., Wendler, P.: Cpachecker 2.3 with
strategy selection - (competition contribution). Lecture Notes in Computer Science,
vol. 14572, pp. 359–364. Springer (2024). https://doi.org/10.1007/978-3-031-57256-
2_21

8. Bajczi, L., Telbisz, C., Somorjai, M., Ádám, Z., Dobos-Kovács, M., Szekeres, D.,
Mondok, M., Molnár, V.: Theta: Abstraction based techniques for verifying concur-
rency (competition contribution). Lecture Notes in Computer Science, vol. 14572,
pp. 412–417. Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_30

9. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. Lecture Notes in Computer Science, vol. 2031, pp.
268–283. Springer (2001). https://doi.org/10.1007/3-540-45319-9_19

10. Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional Reasoning in Model
Checking. Lecture Notes in Computer Science, vol. 1536, pp. 81–102. Springer
(1997). https://doi.org/10.1007/3-540-49213-5_4

11. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. Lecture Notes in Computer Science, vol. 14572, pp. 299–329. Springer
(2024). https://doi.org/10.1007/978-3-031-57256-2_15

12. Beyer, D., Dangl, M., Wendler, P.: A Unifying View on SMT-Based Software Verifi-
cation. J. Autom. Reason. 60(3), 299–335 (2018). https://doi.org/10.1007/s10817-
017-9432-6

13. Beyer, D., Friedberger, K.: A Light-Weight Approach for Verifying Multi-
Threaded Programs with CPAchecker. EPTCS, vol. 233, pp. 61–71 (2016).
https://doi.org/10.4204/EPTCS.233.6

14. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable Software Verifica-
tion: Concretizing the Convergence of Model Checking and Program Analysis.
Lecture Notes in Computer Science, vol. 4590, pp. 504–518. Springer (2007).
https://doi.org/10.1007/978-3-540-73368-3_51

15. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Verifi-
cation. Lecture Notes in Computer Science, vol. 6806, pp. 184–190. Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

16. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. pp. 189–197. IEEE (2010)

17. Beyer, D., Löwe, S.: Explicit-Value Analysis Based on CEGAR and Interpolation.
CoRR abs/1212.6542 (2012)

18. Beyer, D., Löwe, S., Wendler, P.: Sliced path prefixes: An effective method to enable
refinement selection. Lecture Notes in Computer Science, vol. 9039, pp. 228–243.
Springer (2015). https://doi.org/10.1007/978-3-319-19195-9_15

19. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements
and solutions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

20. Blanc, N., Kroening, D.: Race analysis for systemc using model check-
ing. ACM Trans. Design Autom. Electr. Syst. 15(3), 21:1–21:32 (2010).
https://doi.org/10.1145/1754405.1754406

21. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic fault tree analysis for reactive
systems. Lecture Notes in Computer Science, vol. 4762, pp. 162–176. Springer
(2007). https://doi.org/10.1007/978-3-540-75596-8_13

22. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_30
https://doi.org/10.1007/3-540-45319-9_19
https://doi.org/10.1007/3-540-49213-5_4
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-19195-9_15
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1145/1754405.1754406
https://doi.org/10.1007/978-3-540-75596-8_13
https://doi.org/10.1145/876638.876643


20 C. Telbisz et al.

23. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Ab-
straction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994).
https://doi.org/10.1145/186025.186051

24. Clarke, E.M., Klieber, W., Novácek, M., Zuliani, P.: Model Checking and the
State Explosion Problem. Lecture Notes in Computer Science, vol. 7682, pp. 1–30.
Springer (2011). https://doi.org/10.1007/978-3-642-35746-6_1

25. Coto, A., Inverso, O., Sales, E., Tuosto, E.: A prototype for data race detection in
cseq 3 - (competition contribution). Lecture Notes in Computer Science, vol. 13244,
pp. 413–417. Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_23

26. Dietsch, D., Heizmann, M., Klumpp, D., Schüssele, F., Podelski, A.: Ulti-
mate taipan and race detection in ultimate - (competition contribution). Lec-
ture Notes in Computer Science, vol. 13994, pp. 582–587. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_40

27. Dietsch, D., Heizmann, M., Musa, B., Nutz, A., Podelski, A.: Craig
vs. newton in software model checking. pp. 487–497. ACM (2017).
https://doi.org/10.1145/3106237.3106307

28. Dwyer, M.B., Clarke, L.A.: Data Flow Analysis for Verifying Properties of Concur-
rent Programs. pp. 62–75. ACM (1994). https://doi.org/10.1145/193173.195295

29. Eilers, M., Dardinier, T., Müller, P.: Commcsl: Proving information flow security
for concurrent programs using abstract commutativity. Proc. ACM Program. Lang.
7(PLDI), 1682–1707 (2023). https://doi.org/10.1145/3591289

30. Farzan, A., Klumpp, D., Podelski, A.: Stratified Commutativity in Verification
Algorithms for Concurrent Programs. Proc. ACM Program. Lang. 7(POPL), 1426–
1453 (2023). https://doi.org/10.1145/3571242

31. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. pp. 191–
202. ACM (2002). https://doi.org/10.1145/503272.503291

32. Hajdu, Á., Micskei, Z.: Efficient Strategies for CEGAR-based Model
Checking. Journal of Automated Reasoning 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

33. Harman, M., Hierons, R.M.: An overview of program slicing. Softw. Focus 2(3),
85–92 (2001). https://doi.org/10.1002/swf.41

34. He, F., Sun, Z., Fan, H.: Deagle: An smt-based verifier for multi-threaded programs
(competition contribution). In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 424–428. Springer (2022)

35. Heizmann, M., Barth, M., Dietsch, D., Fichtner, L., Hoenicke, J., Klumpp, D.,
Naouar, M., Schindler, T., Schüssele, F., Podelski, A.: Ultimate automizer and the
commuhash normal form - (competition contribution). Lecture Notes in Computer
Science, vol. 13994, pp. 577–581. Springer (2023). https://doi.org/10.1007/978-3-
031-30820-8_39

36. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with
BLAST. Lecture Notes in Computer Science, vol. 2648, pp. 235–239. Springer
(2003). https://doi.org/10.1007/3-540-44829-2_17

37. Huang, J.: Stateless model checking concurrent programs with maximal causality
reduction. pp. 165–174. ACM (2015). https://doi.org/10.1145/2737924.2737975

38. Klumpp, D., Dietsch, D., Heizmann, M., Schüssele, F., Ebbinghaus, M., Farzan,
A., Podelski, A.: Ultimate gemcutter and the axes of generalization - (competi-
tion contribution). Lecture Notes in Computer Science, vol. 13244, pp. 479–483.
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_35

39. Korel, B., Rilling, J.: Dynamic program slicing methods. Information and Software
Technology 40(11-12), 647–659 (1998)

https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-030-99527-0_23
https://doi.org/10.1007/978-3-031-30820-8_40
https://doi.org/10.1145/3106237.3106307
https://doi.org/10.1145/193173.195295
https://doi.org/10.1145/3591289
https://doi.org/10.1145/3571242
https://doi.org/10.1145/503272.503291
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1002/swf.41
https://doi.org/10.1007/978-3-031-30820-8_39
https://doi.org/10.1007/978-3-031-30820-8_39
https://doi.org/10.1007/3-540-44829-2_17
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1007/978-3-030-99527-0_35


On-the-fly Cone-of-Influence Reduction for Concurrency 21

40. Leeson, W., Dwyer, M.B.: Graves-cpa: A graph-attention verifier selector (compe-
tition contribution). In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. pp. 440–445. Springer (2022)

41. de León, H.P., Haas, T., Meyer, R.: Dartagnan: Leveraging compiler optimizations
and the price of precision (competition contribution). Lecture Notes in Computer
Science, vol. 12652, pp. 428–432. Springer (2021). https://doi.org/10.1007/978-3-
030-72013-1_26

42. Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer, S., Ricossa, S., Vendraminetto,
D., Baumgartner, J.: Fast cone-of-influence computation and estimation in prob-
lems with multiple properties. pp. 803–806. EDA Consortium San Jose, CA, USA
/ ACM DL (2013). https://doi.org/10.7873/DATE.2013.170

43. Nanda, M.G., Ramesh, S.: Slicing concurrent programs. pp. 180–190. ACM (2000).
https://doi.org/10.1145/347324.349121

44. Peled, D.A.: Ten Years of Partial Order Reduction. Lecture Notes in Computer Sci-
ence, vol. 1427, pp. 17–28. Springer (1998). https://doi.org/10.1007/BFb0028727

45. Peled, D.A., Valmari, A., Kokkarinen, I.: Relaxed visibility enhances par-
tial order reduction. Formal Methods Syst. Des. 19(3), 275–289 (2001).
https://doi.org/10.1023/A:1011202615884, https://doi.org/10.1023/A:
1011202615884

46. Richter, C., Hüllermeier, E., Jakobs, M., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/S10515-020-00270-X

47. Su, J., Yang, Z., Xing, H., Yang, J., Tian, C., Duan, Z.: Pichecker: A POR and
interpolation based verifier for concurrent programs (competition contribution).
Lecture Notes in Computer Science, vol. 13994, pp. 571–576. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_38

48. Tóth, T., Hajdu, A., Vörös, A., Micskei, Z., Majzik, I.: Theta: a Frame-
work for Abstraction Refinement-Based Model Checking. pp. 176–179 (2017).
https://doi.org/10.23919/FMCAD.2017.8102257

https://doi.org/10.1007/978-3-030-72013-1_26
https://doi.org/10.1007/978-3-030-72013-1_26
https://doi.org/10.7873/DATE.2013.170
https://doi.org/10.1145/347324.349121
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1023/A:1011202615884
https://doi.org/10.1023/A:1011202615884
https://doi.org/10.1023/A:1011202615884
https://doi.org/10.1007/S10515-020-00270-X
https://doi.org/10.1007/978-3-031-30820-8_38
https://doi.org/10.23919/FMCAD.2017.8102257

	On-the-fly Cone-of-Influence Reduction for Model Checking Concurrent Software

