®

Check for
updates

Theta:
Various Approaches for Concurrent Program
Verification (Competition Contribution)

Csandd Telbisz®, Levente Bajczi®)®, Déniel Szekeres®, and Andras Vorss

Department of Artificial Intelligence and Systems Engineering
Budapest University of Technology and Economics, Budapest, Hungary
csanadtelbisz@edu.bme.hu, {baj czi,szekeres ,vori}@mit .bme.hu

Abstract. THETA is a model checking framework with a strong em-
phasis on effectively handling concurrency in software using abstraction
refinement algorithms. In SV-COMP 2025, we complement our existing
approach (abstraction-aware partial order reduction) for multi-threaded
programs with a happens before propagator-based BMC check, expect-
ing a significant increase in performance. We again utilize our portfolio
with dynamic algorithm selection from last year, with improvements re-
garding solver choice and configuration ordering. In this paper, we detail
our algorithmic improvements in THETA regarding the verification of
concurrent software.

1 Verification Approach

THETA [17,11] has been a participant in SV-COMP as a standalone tool since
2022. Earlier versions of THETA exclusively applied abstraction-refinement-based
model checking algorithms [4,1] mainly focusing on multi-threaded tasks. The
focus remained on concurrency; however, different verification approaches have
also been implemented in THETA.

The main contribution for this year’s SV-COMP version of THETA is a sym-
bolic bounded model checking algorithm for the verification of concurrent pro-
grams. Compared to abstraction-based analyses, this BMC approach has the
advantage of being faster, while it has the disadvantage of providing a bounded
correctness proof in many cases. Since THETA is not branded as a bounded model
checker, only complete safe results are accepted. If the BMC algorithm produces
an incomplete safe result, the tool falls back on an abstraction-based analysis
(see more details on our algorithm selection portfolio in Section 2).

The applied BMC algorithm is based on reasoning about the happens-before
relation of concurrent program instructions. Our algorithm builds on the con-
cepts of several partial order-based verification algorithms [2,15,18]. The program
and the property are symbolically encoded into a Satisfiability Modulo Theo-
ries (SMT) formula along with some scheduling constraints based on possible

L. Bajczi—Jury member representing THETA at SV-COMP 2025.

© The Author(s) 2025
A. Gurfinkel and M. Heule (Eds.): TACAS 2025, LNCS 15698, pp. 260265, 2025.
https://doi.org/10.1007/978-3-031-90660-2_22

https://etaps.org/about/artifact-badges/
https://etaps.org/about/artifact-badges/
https://orcid.org/0000-0002-6260-5908
https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0002-2912-028X
https://orcid.org/0000-0001-7617-3563
https://doi.org/10.1007/978-3-031-90660-2_22
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-90660-2_22&domain=pdf

THETA 261

happens-before relations. The (partial) models provided by the SMT solver are
used to analyze possible partial orders of concurrent instructions and to prevent
scheduling inconsistencies that may arise. An inconsistency corresponds to a cy-
cle in the happens-before relation, since a valid execution of concurrent threads
must have a linearization of instructions. A conflict clause is generated and given
to the SMT solver when such a happens-before cycle is found to exclude the in-
valid program execution. The cycle detection and conflict generation algorithm
is integrated into Z3 as a custom user propagator [9] via JavaSMT [3].

The first stage of the algorithm is based on the happens-before propagator
algorithm of Sun et al. [15]. However, their algorithm is insufficient for verifica-
tion under the sequential consistency memory model [6]: the axioms of [15] can
be directly mapped into the rules that define the weak sequential consistency
memory model [18] that are shown to be insufficient for sequential consistency.
Therefore, we extend our algorithm with a second stage when the first stage
finds a candidate program execution (i.e., a valid program execution under weak
sequential consistency) that violates the safety property. To check whether the
happens-before relation representing the program execution is also valid under
sequential consistency as well, we explicitly encode the total store order (order
of write instructions) to guarantee that every write instruction is ordered (a
requirement of sequential consistency [18]).

We also implemented a novel optimization for the happens-before propaga-
tor [16]. The search space of the SMT solver is reduced by extending the encoding
formula. We achieve this by analyzing the program structure and possible partial
orders of program instructions, and collect possible scheduling inconsistencies
(cycles that may arise in the happens-before relation during verification) before
starting the verification decision procedure. Our algorithm searches for potential
happens-before cycles of bounded size. Conflict clauses formulated from these po-
tential cycles are appended to the encoding formula. This enhancement greatly
reduces the solver search space and improves the verification performance.

The mainline verification method of THETA for proving (unbounded) safety
is still a configurable Counterexample-Guided Abstraction Refinement (CEGAR)
algorithm. For the verification of multi-threaded programs, our approach uses
an abstraction-based partial order reduction algorithm and a cone-of-influence
reduction technique tailored specifically to concurrent programs. For recursive
tasks, an interprocedural analysis is applied with call stack abstraction that can
handle infinitely recursive programs. However, this year, only minor improve-
ments have been implemented for our abstraction-based analyses. Detailed de-
scriptions of these analyses in THETA have been presented previously in [4,11,17].

2 Software Architecture

We use portfolio-based algorithm selection as in previous years of SV-COMP [4].
Each configuration is executed in a separate process. A generic interface allows
the easy development of complex portfolios defined by finite-state machines. Dy-
namic algorithm selection is used to select a performant configuration for each

262 C. Telbisz et al.

input task, with several ways of recovering when a selected algorithm takes too
long or encounters an exception. For reachability properties in concurrent tasks,
the introduced BMC algorithm is applied first to discover unsafe tasks and prove
safety for loop-free programs (or programs where complete loop unrolling can
be performed). For programs where complete loop unrolling is not possible (be-
cause the number of loop iterations cannot be determined), each loop is unrolled
twice for the BMC algorithm. However, in this case, only unsafe results are ac-
cepted: we switch to an abstraction-based analysis otherwise. Therefore, THETA
always provides complete proofs of safety. The architecture of THETA has not
changed considerably since last year’s SV-COMP: THETA parses and transforms
the input program into a CFA (supporting multi-threading), then, based on the
configuration in the portfolio, spawns one or more worker THETA processes that
perform the verification. We refer the interested reader to our previous tool paper
for a more detailed description of the architecture of THETA [4].

THETA is implemented in Java and Kotlin, and uses Z3 [13] versions 4.12.2,
4.13.0 and 4.5.0 (the latter two versions are integrated natively via the Java
API, while the former one is used via SMT-LIB), MathSAT5 [10] version 5.6.10,
CVC5 [7] version 1.0.8 and Princess [14] version 2023-06-19 as SMT solvers
under the hood. There were major C-frontend updates in THETA, this year,
mainly concerning memory handling language elements, and new C language
features introduced in benchmarks since last year’s SV-COMP.

3 Strengths and Weaknesses of the Approach

The main scope of development for THETA has been reachability properties
and data-race freedom. In these categories, THETA only gives 2 wrong verdicts,
which is a notable precision among other verifiers at SV-COMP (actually, the
wrong verdicts are the results of the hurried development to adapt to last-minute
changes in the language features used in the SV-COMP benchmarks, e.g., the
use of atomic types). THETA produces several wrong verdicts for other properties
(such as memory safety or termination), however, these properties are only ex-
perimental in THETA. We plan to properly support these verification properties
in future versions.

In Figure 1, we include a comparison of the results with the performance of
THETA in SV-COMP, last year. The figure includes both confirmed and uncon-
firmed correct results (since result validation and the possibility of an uncon-
firmed verdict status have only been introduced this year for data race tasks).
The figure shows the categories affected by recent development: reachability tasks
with memory operations or multi-threading, and data-race detection tasks. The
figure highlights the performance increase achieved by the new version of THETA.

We also performed an internal evaluation of our algorithms separately (not
in a portfolio). The BMC method is able to provide a (bounded) verdict for
520 tasks for the reachability property in the concurrency category out of the
544 programs whose language features are supported by this analysis. Without
the optimization described in Section 1, THETA could solve only 514 tasks. The

THETA 263

B Theta’24 W Theta’25

403
429

- 400 0 3
g a
§ 300
o 200
2 ;2
% 100 : 2
= el
Arrays Heap Recursive Concurrency Data race

(reachability) (reachability) (reachability) (reachability) detection

Fig. 1: Comparison of successful tasks for THETA on common tasks

optimization achieves a more significant improvement in CPU time: the veri-
fication time is reduced by more than 30% on average. While many of these
results are only obtained by applying a bounded loop unrolling (and thus these
verdicts are not reported by THETA as final results), other BMC tools among
SV-COMP competitors apply a similar strategy. Therefore, we executed Deagle
(a BMC tool with a bounded loop unrolling strategy [12], winner of SV-COMP
concurrency category [8]) on our infrastructure for a fair comparison. Deagle
achieved the same result: 520 solved tasks on the same set of programs. While
THETA is disadvantaged on the full benchmark set due to its frontend limita-
tions, this comparison on a major portion of tasks clearly shows the potential of
our algorithm. It also underlines the need for frontend improvements in THETA
to support even more language features.

Our internal experiments also reveal that our CEGAR analysis is capable
of verifying 365 programs for reachability in the concurrency category. Unfortu-
nately, we slightly misconfigured the algorithm-selection portfolio for concurrent
tasks for the competition. Therefore, the best-performing CEGAR configura-
tion using predicate abstraction was not selected for concurrent programs. We
calculated that around 2% more tasks could be solved by a proper configuration.

4 Tool Setup and Configuration

THETA is highly configurable [11], and choosing a suitable configuration for a
verification task can be challenging. For software verification, we recommend
using our complex portfolio in the competition archive [5]: ./theta-start.sh
<input> --svcomp --portfolio STABLE. To minimize the output verbosity,
—--loglevel RESULT can be added. We used these options at SV-COMP 2025.

5 Software Project and Data Availability

THETA is a verification framework maintained by the Critical Systems Research
Group of the Budapest University of Technology and Economics. The project

264 C. Telbisz et al.

is available open-source on GitHub! under an Apache 2.0 license. The version
(6.8.6) used in the competition is available at [5]. Theta participated in the
reachability, memory-safety, concurrency, overflow detection, and termination
categories of SV-COMP 2025.

Funding. This research was partially funded by the EKOP—24—{2,3} New National
Excellence Program under project numbers EKOP-24-2-BME-118, EKOP-24-3-BME-
213 and EKOP-24-3-BME-159, and the Doctoral Excellence Fellowship Programme
under project numbers 400434/2023 and 400443/2023; funded by the NRDI Fund of
Hungary.

References

1. Adém, Z., Bajczi, L., Dobos-Kovacs, M., Hajdu, A., Molnar, V.: Theta: portfolio
of CEGAR-based analyses with dynamic algorithm selection (Competition Contri-
bution). In: Fisman, D., Rosu, G. (eds.) TACAS 2022. Lecture Notes in Computer
Science, vol. 13244, pp. 474-478. Springer (2022). https://doi.org/10.1007/978-3-
030-99527-0_34

2. Alglave, J., Kroening, D., Tautschnig, M.: Partial Orders for Efficient Bounded
Model Checking of Concurrent Software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. Lecture Notes in Computer Science, vol. 8044, pp. 141-157. Springer (2013).
https://doi.org/10.1007 /978-3-642-39799-8_9

3. Baier, D., Beyer, D., Friedberger, K.: Javasmt 3: Interacting with SMT solvers in
java. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. Lecture Notes in Computer
Science, vol. 12760, pp. 195-208. Springer (2021). https://doi.org/10.1007/978-3-
030-81688-9_-9

4. Bajczi, L., Telbisz, C., Somorjai, M., Adém, Z., Dobos-Kovacs, M., Szek-
eres, D., Mondok, M., Molnédr, V.: Theta: Abstraction Based Techniques
for Verifying Concurrency (Competition Contribution). In: TACAS 2024.
Lecture Notes in Computer Science, vol. 14572, pp. 412-417. Springer
(2024). https://doi.org/10.1007/978-3-031-57256-2_30, https://doi.org/10.1007/
978-3-031-57256-2_30

5. Bajczi, L., Telbisz, C., Somorjai, M., Adém, Z., Dobos-Kovécs, M., Szek-
eres, D., Molndr, V.. Theta - SV-COMP’25 Verifier Archive (Nov 2024).
https://doi.org/10.5281/zenodo.14194483

6. Bajczi, L., Telbisz, C., Szekeres, D., Voros, A.: On Stability in a Happens-Before
Propagator for Concurrent Programs (Reproducibility Study). In: TACAS 2025.
LNCS , Springer (2025), https://ftsrg.mit.bme.hu/paper-tacas25-ocfix/paper.pdf

7. Barbosa, H., et al.: cveh: A Versatile and Industrial-Strength SMT Solver. In:
Fisman, D., Rosu, G. (eds.) TACAS 2022. pp. 415-442. Springer International
Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_24

8. Beyer, D., Strejcek, J.: Improvements in software verification and witness valida-
tion: SV-COMP 2025. In: Proc. TACAS. LNCS, Springer (2025)

9. Bjgrner, N.S., Eisenhofer, C., Kovécs, L.: Satisfiability Modulo Custom The-
ories in Z3. In: Dragoi, C., Emmi, M., Wang, J. (eds.) VMCAI 2023. Lec-
ture Notes in Computer Science, vol. 13881, pp. 91-105. Springer (2023).
https://doi.org/10.1007/978-3-031-24950-1_5

! https://github.com/ftsrg/theta/releases/tag/svcomp25

https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.1007/978-3-030-99527-0_34
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-031-57256-2_30
https://doi.org/10.1007/978-3-031-57256-2_30
https://doi.org/10.1007/978-3-031-57256-2_30
https://doi.org/10.5281/zenodo.14194483
https://ftsrg.mit.bme.hu/paper-tacas25-ocfix/paper.pdf
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-031-24950-1_5
https://github.com/ftsrg/theta/releases/tag/svcomp25

10.

11.

12.

13.

14.

15.

16.

17.

18.

THETA 265

Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: TACAS 2013, LNCS, vol. 7795, pp. 93-107. Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_7

Hajdu, A., Micskei, Z.: Efficient Strategies for CEGAR-based Model
Checking. Journal of Automated Reasoning 64(6), 1051-1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

He, F., Sun, Z., Fan, H.: Deagle: An SMT-based Verifier for Multi-threaded Pro-
grams (Competition Contribution). In: Fisman, D., Rosu, G. (eds.) TACAS 2022.
Lecture Notes in Computer Science, vol. 13244, pp. 424-428. Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0_25

de Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver. In: TACAS 2008, LNCS,
vol. 4963, pp. 337-340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
324

Riimmer, P.: A Constraint Sequent Calculus for First-Order Logic with
Linear Integer Arithmetic. LNCS, vol. 5330, pp. 274-289. Springer (2008).
https://doi.org/10.1007/978-3-540-89439-1_20

Sun, Z., Fan, H., He, F.: Consistency-preserving propagation for SMT solving of
concurrent program verification. Proc. ACM Program. Lang. 6(OOPSLA2), 929—
956 (2022). https://doi.org/10.1145 /3563321

Telbisz, C.: Efficient automatic verification of concurrent programs. Master’s thesis,
Budapest University of Technology and Economics (2024), https://theta.mit.bme.
hu/publications/telbiszcsMsc2024.pdf

To6th, T., Hajdu, A., Voros, A., Micskei, Z., Majzik, I.: Theta: a Framework for
Abstraction Refinement-Based Model Checking. In: FMCAD 2017. pp. 176-179
(2017). https://doi.org/10.23919/FMCAD.2017.8102257

Zennou, R., Atig, M.F., Biswas, R., Bouajjani, A., Enea, C., Erradi, M.: Boosting
Sequential Consistency Checking Using Saturation. In: Hung, D.V., Sokolsky, O.
(eds.) ATVA 2020. Lecture Notes in Computer Science, vol. 12302, pp. 360-376.
Springer (2020). https://doi.org/10.1007/978-3-030-59152-6_20

Open Access. This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution, and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-030-99527-0_25
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1145/3563321
https://theta.mit.bme.hu/publications/telbiszcsMsc2024.pdf
https://theta.mit.bme.hu/publications/telbiszcsMsc2024.pdf
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1007/978-3-030-59152-6_20
http://creativecommons.org/licenses/by/4.0/

	Theta:Various Approaches for Concurrent Program Verification (Competition Contribution)

