

llllllllllllllllllllllllllllll
llllllllllllllllllllllllllllll

[ilfililfaaanasasanas III ||||||||||||
MUEGYETEM 1782

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

Partial Order Reduction for
Abstraction-Based Verification of

Concurrent Software in the
Theta Framework

BACHELOR’S THESIS

Author Advisor
Csanad Telbisz Levente Bajczi

December 8, 2022

Contents

Kivonat
Abstract
1 Introduction

2 Background

2.1 Formal Representation of Software Programs

2.1.1 Control Flow Automata
2.1.2 Formal Representation of Concurrent Programs
2.1.3 State Space of a Program
2.2 Formal Verification oo

2.2.1 Model Checking

2.2.2 Counterexample-Guided Abstraction Refinement (CEGAR)

2.3 Partial Order Reduction (POR)
2.3.1 Dependency Relation
2.3.2 Partial Orders L.
2.3.3 Partial Order Reduction Techniques

3 Related Work

3.1 Traditional Partial Order Reduction (POR) Algorithms
3.2 State-of-the-Art POR Algorithms
3.3 Conditional Independence
3.4 POR Combined with CEGAR

4 Partial Order Reduction for Abstraction-Based Verification

4.1 Combining POR with CEGAR
4.1.1 Source Sets
4.1.2 Soundness of the combination of POR and CEGAR

4.2 Abstraction-Aware Partial Order Reduction

10
12
12

15
15
16
17

18
18
18
19
20

4.2.1 Basic Concept and Motivation
4.2.2 Description of the Algorithm
4.2.3 Correctness of the Presented Methods
4.3 Implementation L
4.3.1 Theta L
4.3.2 Implementation of Abstraction-Aware POR
4.3.3 An Optimization - Large-Block Encoding
Data Race Detection
5.1 Data Races
5.2 Partial Order Reduction for Data Race Detection
5.3 Implementation Notes
Evaluation
6.1 Case Study e
6.2 Evaluating on Benchmark C Programs
6.2.1 Test Configurations
6.2.2 Results
6.2.3 Comparison to Other Verification Tools
6.3 Evaluation of Data Race Detection
6.4 Benchmark Conclusions,
6.5 Summaryo
6.6 Future Work

List of Figures

Bibliography

38
38
39
41

42
42
45
45
45
49
50
ol
52
52

53

53

SZAKDOLGOZAT FELADAT

Telbisz Csanad Ferenc
Mérnokinformatikus hallgat6 részére

Részleges rendezés redukcio tobbszalu programok
absztrakcidalapu formalis verifikacidjanak tdmogatasahoz a
Theta keretrendszerben

A kritikus bedgyazott rendszerek vildigdban mind a mai napig nehézséget jelent a tobbmagos
processzorok hatékony kihasznaldsa, f6ként a komplexitas biztonsagi implikaciéi miatt. Hagyomanyos
szoftververifikdci6s médszerek, mint példaul a tesztelés, nem tudjak megfelel$ biztonsdggal kiértékelni
a tobb szdlon fut6 programok viselkedését.

Egy megoldast nytjthat erre a problémara a modellellenérzés, mely egy formdlis megkozelitéssel
bizonyithatja a programok biztonsagat, illetve adhat ellenpéldat. Azonban a tipikusan nagyon nagy
(bizonyos esetekben végtelen) dllapotterek gatolhatjak a modellellenérzés praktikus felhasznalasat. Egy
mobdszer ezen probléma megoldasara az absztrakcié, melynek segitségével csoportosithatéak a program
allapotai, és ezzel lényegesen kisebb allapottér folott sziikséges csak a modellellendrzének miikodnie.
Ezt haszndlja ki az ellenpélda alapi absztrakcié finomitds (CEGAR) algoritmus, mely automatikusan
meg tud taldlni optimalis absztrakciods szinteket.

Tobbszald programok esetén még rosszabbul skdlazédik a modellellen6rzés, ezért specializalt
mobdszerek sziikségesek a komplexitas lekiizdéséhez. Egy ilyen mddszer a részleges rendezés redukcid
(POR), mely ekvivalens lefutdsokat nem fog redundansan felderiteni.

Azonban tovabb lehet optimalizdlni a modellellen6rzés folyamatin ha a két megkozelitést egyiitt
alkalmazzuk, és a PORt a CEGAR Aéltal generdlt absztrakt dllapottéren végezziik el. Ezen megkozelités
kidolgozasa és bemutatdsa a Hallgat6 feladata szakdolgozatanak keretében.

A Hallgat6 feladatanak a kovetkezdkre kell kiterjednie:
® Mutassa be a POR technikdk absztrakcidalapu verifikdcioba torténé integraldsat
® Elemezze, hogyan lehet a CEGAR konfiguracids lehet&ségeit kihaszndlva minél hatékonyabba
tenni a fenti megkozelitést
* Implementélja a bemutatott algoritmusok prototipusat a Theta keretrendszerben
e FErtékelje ki az implementalt algoritmusok teljesitményét az SV-COMP verifikici6s verseny
benchmark készletén

Tanszéki konzulens: Bajczi Levente (doktorandusz)

Budapest, 2022.10.06.

Dr. Dabdczi Tamas
tanszékvezetd
egyetemi tandr, Dsc

Budapesti Miszaki és Gazdasagtudomanyi Egyetem 1117 Budapest. Magyar Tudésok krt. 2. I. ép. .E.444.
Villamosmérnoki és Informatikai Kar Telefon: 463-2057. Fax: 463-4112
Méréstechnika és Informaciés Rendszerek Tanszék http://www.mit.bme.hu ® e-mail: mitadm@mit.bme.hu

HALLGATOI NYILATKOZAT

Alulirott Telbisz Csandd, szigorl6 hallgaté kijelentem, hogy ezt a szakdolgozatot meg nem
engedett segitség nélkiil, sajit magam készitettem, csak a megadott forrdsokat (szakiro-
dalom, eszkozok stb.) hasznaltam fel. Minden olyan részt, melyet sz6 szerint, vagy azonos
értelemben, de atfogalmazva mas forrasbdl atvettem, egyértelmiien, a forras megadasaval
megjeloltem.

Hozzéjarulok, hogy a jelen munkdm alapadatait (szerz6(k), cim, angol és magyar nyelvii
tartalmi kivonat, készités éve, konzulens(ek) neve) a BME VIK nyilvanosan hozzaférheté
elektronikus formaban, a munka teljes szovegét pedig az egyetem belsé haldézatan keresztiil
(vagy autentikalt felhasznéalok szamara) kozzétegye. Kijelentem, hogy a benytdjtott munka
és annak elektronikus verzidja megegyezik. Dékani engedéllyel titkositott diplomatervek
esetén a dolgozat szdvege csak 3 év eltelte utan valik hozzaférhetévé.

Budapest, 2022. december 8.

Telbisz Csandd
hallgaté

Kivonat

A tobbmagos processzorok biztonsidgkritikus rendszerekben torténé térhéditasinak ko-
szonhetéen egyre gyakrabban hasznédlnak tobbszalu programokat ilyen rendszerekben is,
hiszen igy lehet legjobban kiaknézni a parhuzamos szamitas elényeit. A szoftververifika-
ci6 komplexitasa 1j szintre emelkedik a parhuzamossig megjelenésével a szdlak nagysza-
mu lehetséges atlapolédasa miatt. A komplexitdsnovekedés eredménye, hogy a megfelel$
tesztlefedettség elérése még nagyobb kihivast jelent, a naiv verifikdcidés technikak pedig
gyakorlatilag haszndlhatatlannd vélnak. A részleges rendezés redukcié (POR) hatékony
modellellenérzési megkozelités a parhuzamossag kezelésére. Az ellenpéldaalapi absztrak-
cidfinomitds (CEGAR) pedig eredményes absztrakcién alapuld technika allapot térben
torténo elérhetéségvizsgalatra.

A részleges rendezés alapu redukcié aktivan kutatott teriilete az utébbi évtizedeknek.
Szamos algoritmust publikdltak azzal a céllal, hogy minél nagyobb redukcié dltal minél
jobb teljesitményt érjenek el. Jelen dolgozatomban bemutatok néhanyat a teriilet leg-
meghatarozobb algoritmusai koziil. Ugyanakkor ezek a mdédszerek tobbnyire egy egyszeri
allapottér bejarasra épitenek csupan, ami korladtozza a tovabbi optimalizalési lehetésége-
ket.

Munkdmban 1j megkozelitését mutatom be a dinamikus POR technikak absztrakcio-
alapu verifikdciéba torténd integraldsanak. Az j mddszer egy program utasitdsai kozott
épitett fiiggdségi relacié szamitdsa soran az aktudlisan alkalmazott absztrakciét leird in-
formaciot is felhasznélja. Ha két utasitds kozti Osszefiiggdség forrasa el van absztrahélva,
nyugodtan tekinthetjiik ezt a két utasitdst fliggetlennek. A modellbeli 6sszefiiggdség mér-
tékének csokkenésével a POR nagyobb redukciét képes elérni. A CEGAR technikdkat
tobbféle mdédon is optimalizalhatjuk, példaul lusta kiértékeléssel. Dolgozatomban kité-
rek arra is, hogyan lehet a bemutatott absztrakciét figyelembe vevé POR algoritmust az
allapottér lusta kiértékelésli szamitdsdval kombindlni. A bemutatott algoritmusok egy le-
hetséges alkalmazasaként vazolom, hogyan lehet adatvaltozdkat érinté versenyhelyzetek
detektalasdhoz POR alapt redukciét hasznédlni. Végiil kiértékelem a prezentalt algoritmu-
sok teljesitményét.

Abstract

As multi-core processors gain popularity in safety-critical systems, multi-threaded pro-
grams are increasingly used in these systems to exploit their full potential. Concurrency
introduces a new level of complexity into software verification due to the great number of
possible thread interleavings. Achieving satisfying test coverage is even more challenging,
and naive verification techniques become practically infeasible as a result of this com-
plexity. Partial order reduction (POR) is an effective approach to handle concurrency in
model checking. Counterexample-Guided Abstraction Refinement (CEGAR) is an efficient
abstraction-based technique for checking reachability in a state space.

Partial order reduction has been an active field of study in recent decades. Several al-
gorithms have been published with the aim of achieving better performance by greater
reduction. Some state-of-the-art partial order reduction algorithms are presented in this
report. Mostly though, these algorithms only assume a simple state space exploration
which limit the possibilities for further optimization.

In this work, I present novel ways to integrate a dynamic partial order reduction algorithm
into an abstraction-based verification process. Information is exploited about the applied
abstraction when building a dependency relation on operations of a program. If the source
of dependency between certain operations is abstracted away, they need not be considered
dependent. By decreasing the dependency in the model, the reducing effect of partial order
reduction is increased. Counterexample-Guided Abstraction Refinement (CEGAR) has
several optimizations including lazy computation. I show how the proposed abstraction-
aware partial order reduction algorithm can be combined with the lazy computation of
the state space. As an application of the presented algorithms, I introduce how partial
order reduction can be used for data race detection. Finally, I evaluate the performance
of the proposed algorithms.

Chapter 1

Introduction

Rapid development in technology led to huge advancements in microprocessor systems.
Today, multi-core processors are available for various targets from personal computers
through smartphones to safety-critical systems. In a critical system, the increased com-
puting capacity of a multi-core processor may add extra resources to the critical func-
tionalities. This reason has lead to the increasing popularity of multi-core processors and
multi-threaded programs in even critical systems.

Nonetheless, functionally correct behavior is still crucial in safety-critical systems. Al-
though concurrency brings an additional complexity to the development, the need for safe
operation and safety requirements remain a central element of critical systems.

Unfortunately, concurrent software design faces several difficulties. The development of
concurrent software requires more prudence from developers as it is easier to overlook
unintended behavior in a multi-threaded program. A concurrent program inevitably has
a great number of possible thread interleavings. It can be challenging for a developer to
consider all possible interactions of the threads.

Testing can efficiently find programming errors. However, even in a single-threaded ap-
plication, testing is insufficient to prove correctness due to the large number of possible
inputs. In a multi-threaded program, the number of possible executions can be exponential
in the number of operations and threads. Thorough testing becomes practically infeasible
when dealing with concurrency.

Formal verification can prove safety guarantees for a system. Verification is a challenging
task in itself, as the number of possible behaviours can be huge. The verification task is
often to determine whether an error location can be reached in the program. Basically, this
question can be answered by searching the state space of the program for an error state.
Unfortunately, the number of states grows exponentially with the number of variables.
This phenomenon is called the state space explosion problem [20].

An efficient approach to handle this vast complexity is abstraction [26]. By focusing on
some parts of the problem while ignoring other details, we get a smaller representation of
the problem. We may have a chance to solve the original problem by analyzing the abstract
representation. If we fail to solve the problem using this representation, we can refine our
abstraction by considering more details. CEGAR (Counterexample-Guided Abstraction
Refinement) is an efficient abstraction-based model checking algorithm [19]. It follows this
concept of iterative refinement. Abstraction can most efficiently be applied to data: the
values of some variables can be represented by fewer equivalence classes [28].

Concurrency introduces a new level of complexity to software verification due to the great
number of thread interleavings. By default, the whole state space has to be explored be-
cause a violation of the safety requirement may occur anywhere. Unfortunately, the size of
the state space explodes exponentially due to the number of possible thread interleavings.
Verification of concurrent programs has to deal with this complexity.

Partial order reduction (POR) is a widely known technique for handling concurrency in
model checking [36]. The core concept of POR is to identify equivalent executions (traces).
Then, it is enough to check a single representative from each equivalence class. Identifying
equivalent interleavings is based on the interaction of threads. Dependency is defined
between the interacting program operations.

While partial order reduction is an effective technique for handling concurrency, abstrac-
tion is an efficient approach to handling data in model checking. This work aims to
develop a highly performant verification algorithm by combining these two model check-
ing paradigms. I integrate POR into a CEGAR-based model checking algorithm, and I
show how these algorithms can be applied together.

I also present a novel algorithm that exploits the advantages of using POR in an
abstraction-based context. The proposed method is called abstraction-aware partial order
reduction, where the precision of the abstraction is used to boost the reduction power of
POR. I defined a novel dependency relation in the abstract representation of the state
space. The size of the new dependency relation is smaller than the size of the original
relation. This allows POR to achieve more reduction and thus better performance. I show
an approach to combine the new algorithm with the lazy extensions of CEGAR [28] to
further increase the performance of the verification.

I have implemented and contributed the proposed methods to the open-source model
checking framework THETA [38]. I compared the presented approaches to existing so-
lutions on the widely-used SV-COMP benchmark programs (SV-COMP is a prestigious
competition for software verification [10]). The introduced approach leads to performance
gains on the benchmark problems compared to the traditional POR and CEGAR ap-
proaches.

The main scope of my work is error location reachability analysis. However, 1 briefly
introduce how partial order reduction can be used for the verification of another type
of safety requirement: data races [29]. Data races can occur in a program when non-
atomic operations from different threads modify the same memory location. This leads to
undefined behavior which is best avoided. For this problem, a slightly different formulation
is needed.

This thesis is structured as follows. Chapter 2 introduces the essential concepts and
definitions necessary for understanding this work. The basics of model checking are ex-
plained, along with a quick overview of CEGAR and POR. In chapter 3, the related work
is presented. Chapter 4 explains how POR can be combined with CEGAR. First, the
used POR algorithm is described in detail, along with its integration into CEGAR. Then,
abstraction-aware partial order reduction is explained. The soundness of the algorithms
presented in the chapter is proven. Some implementation details are also provided at the
end of this chapter. Chapter 5 introduces how POR can improve data race detection.
Chapter 6 evaluates the work. It starts with a case study, then the findings of benchmark
tests are summarized. Finally, chapter 6 draws conclusions and proposes possible future
works.

Chapter 2

Background

This report assumes that the reader is familiar with the basic concepts of concurrent soft-
ware design and formal software verification. Nevertheless, to avoid the misunderstanding
of used concepts and notions, definitions are introduced in this chapter.

2.1 Formal Representation of Software Programs

Though high-level languages (such as C) are convenient for developers, their verification
would require a formal model of the language semantics, which can be quite complicated
[9]. Thus, for verifying a program written in a high-level language, its source code is
transformed into a low-level formalism that is easier to verify.

One such formalism is the Control Flow Automaton (CFA) [12].

2.1.1 Control Flow Automata

A CFA represents a single-threaded program with the following semantics.

Definition 1 (Control Flow Automaton). A CFA is a tuple CFA = (V,L,ly, E),
where:

o V is a set of variables (each v € V' has a domain D,: the possible values of v),

o L is a set of control locations (it can be considered as the possible values of the
program counter),

e lp is the initial location,

e FC L x OPS x L is the set of transitions. A transition is a directed edge in the
CFA with a source control location, a target control location, and one operation. An
operation (op € OPS) can be:

— a deterministic assignment of a variable (v = ezpr), where the value of the
expression expr becomes the new value of the variable v € V,

— a non-deterministic assignment of a variable (havoc v), where the new value of
the variable v € V can be anything from its domain D,,

— a guard condition ([cond]). A transition with a guard can only be executed if
the guard expression is evaluated to true. .

void main() {
int n;
scanf ("%a", &n);
int £ = 1;
while(n > 0) {
f %= n;
n--;

by

}

(a) C source code (b) CFA of the program

Figure 2.1: Small example to illustrate a CFA

Let us illustrate control flow automata with the following simple example.

Example 1. The program in Figure 2.1a calculates the factorial of the given number: the
value of variable £ is n! at the end of the execution of this program.

Figure 2.1b depicts the CFA of this program. The edges of the CFA correspond to the
operations of the program (including condition checks). ly is the initial location. Note
that a value from user input is assigned to n, which translates to the non-deterministic
assignment havoc n.

2.1.2 Formal Representation of Concurrent Programs

Since the threads of a multi-threaded program are like "single-threaded programs", which
can be represented with a CFA, it is reasonable to use an extended form of the CFA to
model concurrent programs: we can have a set of processes, where each process has its
own CFA [8].

Definition 2 (eXtended Control Flow Automaton (XCFA)). An XCFA is a tuple
XCFA = (Vy, P), where:

» Vj is a set of global variables,
o P is a set of processes. A process is a tuple p = (V}, CFA), where:

— V} is a set of local variables,

— CFA is a CFA (whose variables are V' C V, U V) extended with the following
operations: start thread and join thread, atomic begin and atomic end.

The processes of an XCFA step (take a transition) asynchronously. .

A start thread operation creates a new process ppey (and marks ppe, € P as an active
process) and starts the concurrent execution of the new process at its initial CFA loca-
tion. A join thread operation is disabled until the specified process p terminates: after
p has terminated, the join thread operation can be fired. Atomic begin, and atomic end
operations mark atomic blocks: while the execution of a process is inside an atomic block,
all other processes are disabled. The semantics of these operations are explained in more
detail in the next section.

2.1.3 State Space of a Program

Before introducing the state space of a (multi-threaded) program, a general definition is
given for transition systems.

2.1.3.1 Transition Systems

Transition systems have been defined variously over the years of model checking [7, 23].
In this report, the following definition is used:

Definition 3. A transition system is a tuple (S, A, T, I), where:

e S is a set of states,
e A is a set of actions,
e TC S xAxSisa set of transitions, and

e [is a set of initial states. .

An action « is said to be enabled in a state s if there is a transition t = (s, «,s’) € T for
some s’ € S. The following notations are used:

o 5% & denotes the transition (s, a, s’),
o post(s,a)={s' €8S: F(s,a,¢) €T} and

o enabled(s) is used to denote the set of enabled actions in s.

A transition system is action-deterministic if || < 1 and |post(s,a)| < 1 for any state s € S
and action o € A [7]. The state space of a program is not action-deterministic due to
havoc statements (|post(s, havoc x)| = |Dg|), and uninitialized variables (|I| > 1 possibly).
However, unknown is a possible value for variables when using abstraction (see details
later), which means that an uninitialized variable or a variable after a non-deterministic
assignment gets the specific value unknown. This way, the state space becomes action-
deterministic.

Partial order reduction algorithms are formulated for action-deterministic transition sys-
tems as a common practice [6, 7, 22]. Sometimes, instead of using the term action-
deterministic, it is said that control non-determinism is allowed [2]. Furthermore, partial
order reduction can be applied even for non-action-deterministic systems, though that
requires slightly different formulations [37].

2.1.3.2 State Space of a Control Flow Automaton

The state space of a program is a transition system that consists of all the possible and
reachable states and transitions between them, as defined below.

A state of a CFA represents a control location and the values of the variables at a certain
point during the operation of the program: s = (I,dy,da, ..., d,), where:

e [€ L is the location that the state represents,

o dy,ds,...,d, are the values of the variables (v; = d;, v; € V,d; € D;, 1 <i <n=|V]).

10

A state of an XCFA = (V,, P) represents the control locations of all processes and the
values of all variables (global and local variables) at a certain point during the operation
of the program: s = (l1, 12, ..., 1, d1, ds, ..., dy), where:

e lj € Ly, is the current location of process p;, for 1 < j < p = |P|
(pj = (‘/lpj’ CFAP;’)? CFApj = (Vg U ‘/lpjaij» lija Epj))a

o v; = d;, the current value of variable v;, for 1 <7 <n = |V|

(vi €V, di € Dy, V =Vg U (Upep Vip))-

An action of a transition is an operation that the program executes. An action is enabled
in a state if that operation can be performed in that state of the program. The process
of an action refers to the process of the action’s corresponding program operation: the
process of an action « is denoted with p,. A process is active or enabled in a state if it
has any enabled actions in the state.

A transition with action « leads to the new state of the program after executing the
operation represented by «. The location of the process of « is the source CFA location of
« in the source state, and the target location of « in the target state. Multiple transitions
can have the same action (e.g., z++ from a state where x = 0 or from another state where
x=1).

The operations of an (X)CFA manifest in different ways in the state space:

o For an assignment s ——2"y ¢, the value of v in s’ is the value of expression ezpr
evaluated in s. The location of the statement’s process is the source location of the
statement in s and the target location in s’.

o For a havoc v statement, there are several transitions, |D,| exactly, leading to differ-
ent states. The location of the statement’s process changes with each transition as
usual (the target CFA location of the statement appears in the target states of the
new transitions). The value of v is different in each target state: the values range
over the domain of v.

o An action with a guard condition [cond] is enabled in each state s where the location
of the action’s process is the source location of the action, and expression cond
evaluates to true in s.

. start thread ppe . .
o For a start thread action s ————2-Prewy of the location of the parent process is as

usual in s and s’. In s, a new field appears in the state description that stores the
location ppeqw: the value is the initial location of the CFA of pjew. Also, new fields
appear for each local variable of ppe,, with their initial value (if a local variable is
uninitialized, there are several transitions for this start thread operation similar to
a havoc statement).

o A join thread p operation is enabled in each state s where the location of the action’s
process is the source location of the action, and p is in its final location.

e An atomic begin action disables actions from other processes, that is, no action of
another process is enabled in any state reachable from the target state of the atomic
begin action until a transition with an atomic end operation. Actions from other
processes may be enabled starting from the target of the atomic end operation.

11

An initial state of a program is a state where all processes are in the initial location of
their main procedure. The values of the variables in an initial state can vary based on
the language the program is written in. Uninitialized variables either contain memory
garbage (as local variables in C [29]), resulting in several initial states per process, or they
are initialized automatically to a default value (as in Java [30]), resulting in one initial
state per process.

Since model checking includes searching the state space, the efficiency of a verification
algorithm largely depends on the size of the state space, that is, on the number of control
locations and variables in the program and the size of their domains. To represent even a
single 32-bit integer variable, 232 states would be necessary. With more variables, it would
grow exponentially: this is called the state space explosion problem [20]. Thus, efficient
algorithms are essential to overcome this problem.

2.2 Formal Verification

Formal software verification aims to prove certain properties of a program mathematically
[18]. Among others, verified properties can be reachability criteria (whether a certain error
state is reachable with any execution of the program), memory-safety (no memory leak or
other memory handling issue), or the problem of termination (whether all executions of
the program will terminate). In the scope of this work, reachability criteria are considered
exclusively.

2.2.1 Model Checking

Model checking is a formal verification technique where properties are verified by analyzing
the state space of the program [26]. In general, the input of a model checking algorithm
is a model (here, an XCFA) and a formal requirement. The output of such algorithms is
a verdict: the model is either safe (it is mathematically proven to be safe) or unsafe (a
counterexample is provided where the requirement is violated).

MODEL SAFE
(source code / CFA) + mathematical proof

MODEL
CHECKING
ALGORITHM

FORMAL
REQUIREMENT

UNSAFE
+ counterexample

Figure 2.2: Model checking in general.

As for the formal requirement, in reachability analysis, certain points of the program
under verification are marked as unsafe. If any possible program execution reaches one
such point, the reachability criterion is said to be violated. In the introduced formalism,
the (X)CFA, these marked points (locations) are called error locations. So the formal
requirement is that no error location is reachable from the initial location(s) of the (X)CFA.
A state is an error state in the state space of the program if its location is an error location.
In the case of a multi-threaded program, a state is an error state if any of the program’s
processes is in an error location in that state.

12

The mathematical problem of model checking is undecidable. Consider any program
with an error location at its exit point. To prove that this error location is unreachable
is equivalent to answering whether this program always terminates. The termination
problem is undecidable [39]. Verification techniques have to face this problem and provide
usable algorithms that can verify as much software as possible.

2.2.2 Counterexample-Guided Abstraction Refinement (CEGAR)

CEGAR is an abstraction-based model checking algorithm [19]. It uses abstraction to
handle the problem of state space explosion. CEGAR starts from a coarse abstraction of
the problem and iteratively refines the abstraction until the problem can be solved. The
more coarse the abstraction is, the more details are ignored. This way, there is a chance to
answer the original problem by solving a much simpler abstract problem. If the abstract
problem is too generic to provide an answer, the abstraction must be refined.

The core of the algorithm is the CEGAR-loop which consists of two main parts: the
abstractor and the refiner (see Figure 2.3).

Initial precision

Abstract counterexample

Abstractor [------------» ARG J€------e-mee-- Refiner

Y

Refined precision
Unsafe

+ counterexample

Safe

Figure 2.3: The CEGAR-loop.

The abstractor builds the abstract state space (in fact, an abstract reachability graph,
ARG [14]) where abstract states consist of multiple concrete states. A concrete state is an
error state if the control location of one of the processes is marked as an error location.!
An abstract state is considered an abstract error state if it contains at least one concrete
error state. The abstractor tries to prove that no abstract error state is reachable in the
abstract state space. If no abstract error state is reachable, the algorithm terminates with
a safe verdict since no concrete error state can be reached when its over-approximation is
unreachable. If an abstract error state is reachable, the abstractor provides an abstract
counterexample to the refiner.

The refiner checks whether the given counterexample is feasible (a concrete error state is
reachable, indeed) or spurious (a concrete error state is not reachable and the abstract
counterexample was the result of the abstraction) [27]. In the first case, the algorithm
terminates with an unsafe verdict and the found counterexample. While in the latter case,
the abstraction is refined, and the unreachable abstract states are removed (pruned) from
the abstract state space.

!Defining error states as states containing an error location is perfect for error location reachability anal-
ysis which is in the main focus of this work. However, for other formal requirements, another interpretation
of error states is necessary (c.f. data races in Chapter 5).

13

In practice, when CEGAR is applied for software verification, information about data flow
(e.g., values of variables) turned out to be most beneficial to abstract away [15]. Typical
forms of abstraction are explicit-value abstraction [13] and predicate abstraction [25].

With explicit-value abstraction, the concrete values of certain variables are tracked while
other variables are abstracted away. In the refinement step, new variables are added to
the set of tracked variables. When evaluating an expression (e.g., a guard condition or the
value for an assignment), untracked variables get an unknown value, meaning it can be
anything from the domain of the variable. If the concrete value of the expression cannot
be calculated due to unknown values, the value of the whole expression will be unknown.

Predicate abstraction keeps track of logical predicates about variables (e.g., z = 1 and
y > 0). In the refinement step, a new set of tracked predicates is calculated. When
evaluating an expression, the result will be unknown if the tracked predicates do not
imply the expression.

The abstraction can be represented formally with an abstraction function [7]. The ab-
straction function is a function f : § — § (where S is the set of concrete states and S is
the set of abstract states)?. Multiple concrete states can be mapped to the same abstract
state. The abstract state space over-approximates the concrete state space. An abstract
state s(, is initial if f(sg) = s; for the initial state so of the concrete state space. If a
transition (s1, @, s2) is in the concrete state space, there is a transition (f(s1), a, f(s2)) in
the abstract state space. An abstract state ¢’ is an error state if there is a state e € S
such that f(e) = ¢’ and e is an error state of the concrete state space.

(a) Abstract state space S with an abstract counterexample

(b) Feasible counterexample in Sy (c) Spurious counterexample in S,

Figure 2.4: CEGAR counterexamples

2In some cases in practice, a concrete state can be represented by multiple abstract states [15]: the
abstraction function then maps to a set of abstract states.

14

Example 2. Consider a model checking process where the abstractor provides the abstract
counterexample highlighted in Figure 2.4a. This counterexample leads from the abstract
initial state aq to the abstract error state ay in the abstract state space AS. The abstract
state space is an over-approrimation of the concrete state space. So the refiner has to
decide whether the abstract counterexample is feasible or spurious.

First, let us assume that the concrete state space abstracted by AS is S1 from Figure 2.4b.
In this case, the counterexample is feasible since we can find a transition sequence for
the abstract counterexample in the concrete state space starting from the initial state sq
leading to the error state sg.

However, Sy from Figure 2.4¢ can also be the concrete state space whose abstraction is
AS. The counterexample is spurious now, as there is no path from s1 to sg in Ss.

Let f1 be the abstraction function f; : S1 — S. fi(s1) = a1, and s1 is the initial state
of S1, so ay is initial in S. If s; is within the bounding box of a; in Figure 2.4b, then
f1(si) = aj. sg is an error state, so fi(sg) = a4 is an abstract error state. Transition
(s1 — s5) is in S1, so the transition (a1 — a3) = (fi(s1) = fi(ss)) is in S. Similarly,
transition (s4 — s3) is in Sy, so the transition (ay — a2) = (fi(s4) = fi(s3)) is in S.

2.3 Partial Order Reduction (POR)

Generally, the execution order of operations from different threads is unspecified in a multi-
threaded program. Thus, when such a program is verified, it is obviously insufficient to
check only a single randomly chosen thread interleaving (consider the possible interleavings
of the threads in Figure 2.5a: the printed result can be anything from {00, 01, 10, 11}).

A definitely correct approach is to check every possible execution. While it yields an
accurate result, it suffers from the problem of combinatorial explosion. The intuitive idea
to reduce the number of interleavings to check is that there are independent operations
whose order of execution is irrelevant: their swapping (if they are neighbors) does not
change the outcome. This way, executions can be grouped into equivalence classes [32, 23].
Any element of a class can be transformed into any other execution in the same class by
only swapping independent neighbors. Then, it is enough to check only one execution
from each equivalence class. This idea can be generalized to transition systems.

2.3.1 Dependency Relation

In the case of transition systems, the dependency relation used to be formulated on a
general level [7]:

Definition 4. Let TS = (S, A,T,I) be a deterministic transition system. For s € S,
a, B € enabled(s) (a # (), actions a and 3 are independent in s if:

o [€ enabled(post(s,a)) and « € enabled(post(s, 3)), and
« post(post(s,a),) = post(post(s,), a).
a and (B are dependent in s if they are not independent in s. .

The first condition means that independent actions can neither disable nor enable each
other. The second property states that independent actions are commutative. Some-
times, dependency of transitions is used in this report: by the dependency of transitions,
dependency of their actions is meant.

15

It is rather impractical to check this definition of independence. Checking these conditions
would require calculating the successor states of s after a and 8 and after § and «. This
is exactly what partial order reduction tries to avoid. Fortunately, actions are program
operations when our transition system models a program. Sufficient conditions can be
given for two actions to be independent using the semantics of program operations [23].
Intuitively, when speaking about a multi-threaded program, two operations are indepen-
dent if neither their control part nor their data part is in conflict. The following conditions
formalize this intuition. Two actions « and § are independent if:

e « and 3 are not the actions of the same process, and

o the set of objects that are accessed by « is disjoint from the set of objects accessed
by .

Note: in our case, shared accessed objects (that operations from different processes,
threads can access) are global variables, but in general, it could mean any object (e.g.,
a file). Also, note that special attention is needed at operations that create or destroy a
process.

Independence could be defined more sophisticatedly, e.g., by distinguishing read and write
operations on shared objects (two read operations on the same object could be considered
independent) [33]. This way, the overall dependency between operations would decrease.
At the same time, this work focuses on the basic concepts of partial order reduction and
not on such enhancements.

It is easy to check that these conditions are sufficient indeed for two actions to be inde-
pendent. An action « can only enable or disable another action 3 if either they are in the
same process or o modifies the value of a global variable that 8 uses in its guard condi-
tion. In both cases, the actions are dependent based on the introduced conditions. As for
commutativity, the swapping of two actions can only lead to different states if their sets of
accessed objects are not disjoint: the actions are dependent according to the introduced
conditions, again.

2.3.2 Partial Orders

Definition 5 (Partial Order, Total Order, Linearization). On a set S a relation
R C S x S is a partial order if R is reflexive, antisymmetric, and transitive.

A partial order R is a total order if for all s1, sy € S either (s1,s2) € R or (s2,$1) € R.
A linearization of a partial order R on S is a total order R’ C S x S such that R C R'. .

A partial order R can be visualized by a directed graph whose vertices are the elements
of the set S, and there is an edge from s; € S to s9 € S if and only if (s1,s2) € R.

A concrete execution (also called thread interleaving) of a program can be considered as
a total order R on the set of operations where, for all opy,ops € OPS, (op1,0p2) € R iff
op; is executed before op,. In the case of multi-threaded programs, a partial order can
be associated to an execution using the concept of dependency where the partial order
relation consists of the dependent ordered pairs of operations (operations are in execution
order in the ordered pair). The concrete execution R is the linearization of this partial
order. [23]

16

a —>» b —>» ¢

Thread T3 Thread Ts

a: x = 0; d: x = 1; \ \

b: a =1; e: b=1;

c: print(x); f: print(x); d > o > f
D 4

(a) Basic two-threaded program (b) Visual representation of the partial or-

der for execution E = (a,d, b, e,c, f).

Figure 2.5: Multi-threaded program with a partial order for an execution

Example 3. Let’s take threads Ty and Ty from Figure 2.5a and the ezecution E =
(a,d,b,e,c, f). E is a total order on the set of the siz operations.

Operations a,d,c, f are dependent with each other since they all use the global variable
x. Operations of the same thread are dependent by definition. The partial order with the
dependent operation pairs can be seen in Figure 2.5b. Fxecution E is the linearization of
this partial order.

E' = (a,b,d,c,e, f) is also the linearization of the same partial order.

2.3.3 Partial Order Reduction Techniques

Executions - or generally transition sequences in a transition system - that are the lin-
earizations of the same partial order yield the same result since dependency is completely
"included" in the partial order. That is, partial order is the formalization of the equiva-
lence class intuitively used in the introduction of this section. Such an equivalence class
is called a Mazurkiewicz trace [32]. Any two transition sequences in a Mazurkiewicz trace
can be obtained from each other by successively swapping adjacent independent actions.
Therefore, it is sufficient to check a single transition sequence (linearization) from each
Mazurkiewicz trace (partial order) in a verification process. This is the basic concept of
partial order reduction. [23]

Partial order reduction methods construct a reduced transition system and explore only
this smaller reduced state space instead of the original one. For the correctness of such
an algorithm, it has to be guaranteed that at least one transition sequence from each
equivalence class is completely included in the reduced transition system. In practice,
the reduced state space is "constructed" by calculating a sufficient subset of outgoing
transitions for exploration from a state. When exploring the state space, we only proceed
through transitions in the calculated subset. This way, only part of the state space is
explored: the reduced state space.

There are two main approaches to partial order reduction: static and dynamic POR [7].
In the static version, the model (e.g., the CFA of the program) is analyzed and the reduced
state space (or its high-level description) is generated prior to the verification process. The
dynamic approach constructs the reduced state space during the model checking. The
latter’s advantage is that it is not necessary to generate the entire state space, only the
relevant part (that is actually needed in the verification). The abstraction-aware partial
order reduction algorithm integrated into CEGAR presented in this report is inherently a
dynamic approach since it uses on-the-fly information.

17

Chapter 3

Related Work

Partial order reduction has been a field of active research since the 1990s to this day
[40, 23, 36, 7, 22, 1]. Algorithms evolved from basic solutions to proven optimal methods
with several further optimizations. In this work, I use an early POR algorithm as a
base since the focus is not on implementing a state-of-the-art algorithm but rather on
developing a novel approach to the combination of partial order reduction (POR) and
counterexample-guided abstraction refinement (CEGAR).

3.1 Traditional Partial Order Reduction (POR) Algorithms

Early partial order reduction methods build on the notion of stubborn [40], ample [7],
persistent, and sleep sets [23]. These sets are associated with states: such states are
subsets of the enabled actions in that state. The reduced state space is generated in a way
that, from a state, only enabled actions in its stubborn/ample/persistent set are explored.
It is proven that if a deadlock is reachable in the original state space, a deadlock can
also be reached in the reduced state space. Therefore, it is sufficient to explore only the
reduced state space.

Sleep sets are particularly useful in stateless model checking [24] where the visited states
are not remembered. A sleep set is also associated to a state. An action « is put in the
sleep set of a state s when we know that a would lead from s to an already explored state.
Actions in the sleep sets are not explored. Sleep sets are orthogonal to persistent sets:
they are used together to achieve more reduction.

3.2 State-of-the-Art POR Algorithms

Traditional POR algorithms approximated the conflicts between actions statically. Later,
a dynamic partial order reduction (DPOR) algorithm was introduced, where the indepen-
dence of actions is decided dynamically during the exploration [22]. DPOR first takes
a (complete) execution, then marks backtrack points along this trace where dependency
is detected. Actions that might lead to other non-equivalent traces are associated to a
backtrack point. These actions have to be explored from the marked state. The algorithm
continues to explore the state space until there is any unprocessed backtrack point.

Source DPOR from [1] is a dynamic partial order reduction algorithm that uses source
sets instead of persistent sets. Each persistent set is a source set, but source sets are

18

strictly smaller in some cases. This way, fewer executions are explored with source sets
while reaching an equivalent result to the original problem. The presented source DPOR
algorithm uses sleep sets, too.

Optimal DPOR [1] extends the Source DPOR algorithm with a construct called wakeup
tree, which replaces the backtrack set of actions introduced in DPOR [22]. In simple
DPOR, only single actions are added to backtrack sets. Here, action sequences are as-
sociated with backtrack points: these are wakeup trees. Exploration is only performed
along the associated action sequences from backtrack points. Optimal DPOR is proven
to be optimal: the minimal number of interleavings are explored in every case (that is
no equivalent executions are explored). Since it has been published, Optimal DPOR has
been extended with several enhancements [5, 31].

3.3 Conditional Independence

Initially, the independence relation of actions has been approximated statically by ana-
lyzing the transitions in the model [7, 23]. As a result, two actions that are dependent in
some contexts will be handled as dependent in all possible contexts. However, several POR
algorithms retrieve information from the search context: actions are considered dependent
only in certain states under certain conditions [4, 5, 42].

In [42], a guarded independence relation is introduced where a condition is associated with
each pair of actions meaning that the two actions are independent in any state where
the condition holds. As an example, take two actions a and 8 where « reads the value
of variable x while § assigns a value to x in the form of z := v. « and 8 are guarded
independent with respect to x = v, meaning that « and 8 are independent in any state
where x = v holds (obviously, 8 does not change z if its value is already v). It could be
said that the abstraction-based POR proposed in this work uses a guarded independence
relation where the condition for two actions using the same variable z is "variable z is
abstracted away in the current abstraction'. At the same time, it is computationally
simpler to check during the dependency calculation whether a variable is abstracted away.
So in the algorithm presented in this work, the condition for guarded independence is only
implicitly used.

In [5], an extension of optimal DPOR is presented: optimal DPOR with observers. The
independence of actions is conditional to future actions called observers. For actions a and
B, which both write the shared variable z, v is an observer if it is a possible future action
that reads the value of x. If there is no observer for o and 3 (i.e., x is unused later), o and
5 can be considered independent. Also, consider the situation where we have n processes
D1, D2, ..., Pn, €ach with the single action z := i (for p;) and a safety requirement on z
after joining all processes. The order of processes before the last one is irrelevant since the
last process will overwrite the value of x anyway. So instead of n! possible interleavings,
it is sufficient to check n (where the last process is different in each trace). Optimal
DPOR with observers achieves further reduction in these scenarios. Again, abstraction-
based POR could be an extension of observers where any read operation on a variable x
that is abstracted away is not an observer of z. Similarly, it would mean a considerable
and redundant computational overhead to realize abstraction-based POR using observers
compared to the method presented in the next chapter.

Context-sensitive DPOR [4] is another extension of optimal DPOR [1], which uses condi-
tional independence, though implicitly. Instead of associating conditions to action pairs,
it checks state equivalence during the state space exploration. Sleep sets are modified so

19

that not only can single actions be added to a sleep set, but also sequences of actions to
avoid exploring that sequence. Context-sensitive POR would be capable of recognizing
executions that are equivalent only in the current abstraction because this algorithm is
defined on a more general level. At the same time, it would only realize that two such
executions are equivalent in the "last moment", just before the two traces reach the same
state. The proposed abstraction-based POR algorithm knows it when the two traces di-
verge. Thus, context-sensitive POR has to explore more states to discover the equivalence
of executions.

3.4 POR Combined with CEGAR

Some partial order reduction algorithms, such as sleep set techniques, are primarily useful
in stateless model checking. (Sleep sets aim to avoid exploring the same state several
times: this can be easily achieved in stateful model checking by consulting the list of vis-
ited states.) CEGAR is inherently a stateful model checking paradigm, so these methods
provide less reduction. On the other hand, other POR algorithms are similarly advanta-
geous in stateful as in stateless model checking, such as a persistent set technique where
complete branches of the state space can be ignored.

CPACHECKER is an open-source configurable program verification framework that sup-
ports several analysis techniques, including CEGAR and partial order reduction [11].
However, the POR algorithm applied in CPAchecker is relatively simple: only thread-
local operations are considered independent (where an operation is global if it accesses a
global memory location and thread-local otherwise). That is, the application of partial
order reduction is orthogonal to CEGAR in CPACHECKER.

In [41], an abstraction-based verification (though the Impact algorithm, not CEGAR) is
combined with a dynamic partial order reduction algorithm. Although they use conditional
dependency, it is similar to the guarded independence relation described in [42], and they
do not exploit information about the applied abstraction to reduce dependency.

20

Chapter 4

Partial Order Reduction for
Abstraction-Based Verification

This chapter describes how partial order reduction can be integrated into a CEGAR-
based model checking algorithm. As the reduction of the state space is done during the
verification process, it is a dynamic approach here, even though the used POR algorithm is
more similar to static approaches [23] than the dynamic methods [1, 22] in the literature.

The novelty of the proposed algorithm lies in using extra information about the actual
abstraction used in CEGAR when applying partial order reduction. This information is
only available on-the-fly: that is why the presented algorithm is dynamic. Furthermore,
this abstraction-aware extension of POR is orthogonal to the underlying algorithm: any
dynamic POR method could be used.

4.1 Combining POR with CEGAR

In CEGAR, instead of the concrete state space of a program, an abstract state space is
explored. So, partial order reduction is applied in the abstract state space.

4.1.1 Source Sets

In Section 2.3.3, it has been introduced that partial order reduction techniques work by
calculating sufficient subsets of outgoing transitions to explore for each state. For this
work, I adapt source sets from [1, 2]. Before defining source sets, a few notations are
introduced.

A transition sequence w = t1...t; is an execution from s, if there are states si, ..., s, and
transitions s - $1, Si—1 LN s; (for 1 < i < k) in the transition system. s = s’ means that
starting from state s, and taking all the transitions in w, state s’ is reached. Often, actions
are used in notations instead of transitions: an action « used in such a context means a
transition with « as its action. The concatenation of transitions or transition sequences is
denoted by w.t or w.v: for w = wy...wy,, v = v1...v,, and transition ¢, transition sequence
w.t = wy...wpt, and wW.v = W1... WU ... Vp.

Transition sequences w; and wsp are in the same equivalence class (Mazurkiewicz trace) in
. w1 w2 P
a state s, if s = 5" for s — s’ and s — s”. This is denoted by wy ~4 ws.

21

If transition sequences w; and wg can be completed (by concatenation) to equivalent
sequences from state s, it is denoted by w; ~s we. That is, w1 ~g ws if there are
transition sequences vq, v9 such that wi.vy >~ wo.vs.

4.1.1.1 Notion of Source Sets

A source set is a subset of enabled actions in a state of a transition system: it is sufficient
to explore this subset in a software verification process [2]. This section introduces the
exact definitions concerning source sets.

Intuitively, a subset P of enabled actions in a state s is a source set if for each execution
w from s there is an action o € P such that the first transition in w that is dependent
with « is a transition with « as its action.

Definition 6 (Weak Initials). Let s be a state, and w be a transition sequence from s.
For w, the set Wis(w) of weak initials in s is a set of actions: a € Wig(w) iff v ~5 w.

Note, that o € enabled(s), since o ~5 w requires that o and w can be executed from s.

The intuitive idea behind weak initials is that in a state s, we can choose an action « for a
sequence w from its weak initials, explore a transition with action « and avoid exploring
w from s. Then, we can still reach the same state from post(s, a) as we would reach from
s by w. This idea is formulated by the following definition of source sets and Theorem 2
in Section 4.1.1.3 from [2].

Definition 7 (Source set). Let s be a state. A set P C enabled(s) is a source set in s
if for each transition sequence w from s, Wils(w) N P # {. .

Example 4. Let us have the example from Figure 4.1, and let s be the initial state. Let
the value of each variable be 0 in s.

Forw = apyd, Wis(w) ={«,3,0}. To see this, let us check that each element of WIg(w)
can be extended to an execution equivalent with w. For a, w is a trivial choice: it starts
with «, and it is equivalent with itself. For 3, we can choose w' = fayd since w' ~4 w
(the processes are in the same location after w and w', and the values of all variables are
the same). As for §, it can be extended to daf~y which is equivalent with w.

Now, let us see v = Byad: Wig(v) = {B,0}. « is not a weak initial of v in s, because
we cannot find a suffix v’ for a such that a.v' ~4 v. After v, the value of variable a is 2.
Starting with «, the value of a is always 0 (the initial value of x), no matter what actions
are executed after c.

As a consequence {a} is not a source set in s, because Wls(v) N{a} = 0. On the other
hand, {8} or {a,d} are source sets in s. Unfortunately, to see this using the definition,
we would need to check all executions from s whether there is an equivalent execution for
each of them starting with an element of our source set. In this small example, we could
do that, but in practice, we need a better method to compute source sets.

Thread t; Thread to Thread t3
(@) a = x; (B)b = 1; (0) c = 1;
(v) x = 2;

Figure 4.1: Small example to illustrate source sets

22

4.1.1.2 Computing Source Sets

As we have seen in Example 4, using the definition to calculate source sets means checking
all executions from a state. This is exactly what partial order reduction tries to avoid:
exploring all executions in the state space. So we need a method for computing source sets
that is applicable in practice. The applied algorithm is similar to Overman’s algorithm
[35, 23]. Before presenting the algorithm that calculates source sets, the following notions
are introduced (similar concepts can be found in [2]):

Definition 8 (May-enabled action in a state). An action « is may-enabled in a state
s, if € enabled(s) or a can become enabled after a sequence of transitions from processes
other than p,. .

Definition 9 (Future actions). future_actions(s,a) is a set of actions: [€
future__actions(s, «) iff there is a transition sequence w = wj...w, from s, where w, = j,
and the first action fy of pg in w is either o or fy ¢ enabled(s). .

An action « ¢ enabled(s) can be may-enabled in a state s in two ways:

e The source CFA location of « is the location of p, in s, but « is disabled for some
reason. In practice, this can happen, if « is the next action of p, and « is a join
operation on a process p that has not reached its final location in s (a gets enabled
when p terminates); or o has a guard condition [c] that evaluates to false in s («
gets enabled when actions from other processes change the values of variables used
by ¢ so that ¢ evaluates to true).

o « is the first action of a process (the source location of « is the initial location of
the CFA of p,) that has not been started as of s (« gets enabled when its process is
created and started by another process).

The condition on Sy in the definition of future_ actions implies that By is may-enabled in
s. If B is in the same process as «, then By = a. Otherwise, By is not enabled in s.

We can compute an over-approximation of future__actions(s,a) without exploring the
state space by analyzing the static model of the program. Initially, the actions of the
process p, of a are collected with a graph search of the CFA of p,. Another action
£ that is may-enabled in s can be enabled by an action reached in the CFA of p,.
Then, future__actions(s,) is called recursively to collect more future actions. Algorithm 1
demonstrates the algorithm for computing future__actions.

Algorithm 1: Computing future__actions

Input: s, o

Output: FA /* Set of future actions */

Pa process of «

FA,,, < reached actions with a graph search of the CFA of p, from «

FA «+ {}

foreach may-enabled 5 in s, B ¢ enabled(s), B may be enabled by a v € FA,, do
‘ FA + FA U future__actions(s, [3)

end

FA < FA,, UFA

N O ok N

23

On the implementation side, we have the below three cases to check whether the may-
enabled action § can be enabled by a reached action ~. If any of them is true,
future__actions(s,) is calculated.

o v starts the process of S.
» 7 terminates its own process p, and 3 is a join operation on p,.

e v writes a variable that 8 uses in its guard condition.

This computation of future__actions based on the static analysis of the model is an over-
approximation, because each branch of the CFA is searched in line 2, even though some
branches might not be reachable in the state space.

There is a minor nuisance because a process may start another process with the same
CFA. This would result in endless recursion in the presented algorithm. Fortunately, this
problem can easily be eliminated by passing the already reached actions in the recursive
call of future__actions: these actions are excluded from the graph search. For the sake of
conciseness though, I have neglected these details from the description of Algorithm 1.1

With the help of future_actions, we can compute source sets. The enabled actions in the
current state s (FA = enabled(s)) are provided as an input to Algorithm 2 along with the
initial actions (IA) that are initially put in the source set(-to-be) P. As long as any new
action is added to P, the following is repeated: future__actions(s, «) is calculated for each
a € EA\ P. If there is any action [€ future__actions(s,«) that is dependent with an
action v € P, a is added to P.

A source set is computed with Algorithm 2 starting from the enabled actions per process.?

That is, the set of enabled actions of a single process is extended to be a source set with
enabled actions from other processes. This is repeated for each process. One source set
with minimal size is chosen from the calculated source sets and returned as the final source
set of s (this is a simple heuristic for choosing from multiple possible source sets to achieve
the most possible reduction).

! Alternatively, an iterative approach can be used: in fact, an iterative approach has been implemented.
On the other hand, it is easier to present and understand the algorithm in the recursive way.

2Source set calculation could start from a single action, but actions of the same process would be added
to the set anyway: that extra calculation can be spared.

Algorithm 2: Calculating a Source Set from State s
Input: s, EA = enabled(s), IA C EA /x IA: 1initially added actions */
Output: P /* Source set containing [A */

1 P+ IA

2 newAdded < True

3 while newAdded do

4 newAdded < Fulse

5 toAdd < {a : a € EA\ P, 30 € future_actions(s,«),3y € P

such that 8 and v are dependent}

6 if toAdd #) then
7 P+ PUtoAdd
8 newAdded <+ True
9 end
10 end

24

Theorem 1. A set P returned by Algorithm 2 for a state s, EA = enabled(s), and
VIA C EA is a source set in s. .

Proof. Let us check the definition of source sets, that is, for each execution from s, one of
its weak initials is in P. Let w = wy...w, be a transition sequence from s. We have two
cases:

I. Jw; € P for some 1 < i <n (that is w contains an action from P)
Let wy € P be the first occurrence of an element of P in w: w; ¢ P for 1 < j < f.

All such w; is independent with wy. To see this, assume the opposite: there is a wy
dependent with wy, and d < f. Since wy is the first action from P in w, wy can be
reached from s with actions from processes that do not have actions in P. That is,
wq € future__actions(s,a) for some o € enabled(s) \ P. In this case, Algorithm 2
would have added a to P based on the condition in line 5 (with wq as 8, wy as
v, and « as « using the notation of the algorithm). This did not happen, so our
indirect supposition is wrong.

Since wy is independent with all actions preceding wy in w, wy.(w\ wy) ~5 w. This
implies that wy ~s w, which means by definition that w; € WIs(w). So one of the
weak initials of w is in P, indeed.

II. iﬂwi epP

This supposition implies that all actions in w are independent with all actions in
P. Assume the opposite: there is a wy for some 1 < d < n, and v € P such
that wg and v are dependent. Reasoning is similar to case I. Since w; € P, wy €
future__actions(s, o) for some a € enabled(s) \ P. Algorithm 2 would have added o
to P based on the condition in line 5, which did not happen.

Since all actions in w are independent with all actions in P, any a € P is a weak
initial of w: a.w ~4 w.a, which implies that o ~5 w. This means by definition that
a € Wig(w), indeed. So one of the weak initials of w is in P, again. O

Now, we have an algorithm that calculates source sets. The next section explains how
source sets can be used for partial order reduction.

4.1.1.3 Source Set Selective Search in CEGAR

In CEGAR, the abstract state space is built by the abstractor in an ezpand operation. Let
S denote the states of the abstract state space and Sg C S the set of expanded states. A
not-yet-expanded state s € S\ Sg is chosen based on a search strategy (e.g., BFS, DFS,
or A* with some sophisticated heuristics) and the selected state s is expanded. That is,
the enabled actions in s are collected, and their targets (if not already in S) are added
to the abstract state space as new states, and a new transition is added for each enabled
action from s to the new state.?

The above way, the abstract state space is fully discovered. That is what POR. is about
to prevent. The POR algorithm applied here filters the enabled actions and only expands
the abstract state space with the filtered subset of enabled actions and their successor

3The construction of the abstract state space (the Abstract Reachality Graph or ARG exactly) is slightly
more complex in CEGAR. States can cover each other, and it is unnecessary to expand covered states.
Nevertheless, covering does not influence POR since POR works in the expand operation. See [21] for more
details about covering.

25

states. This filtered subset is a source set in each state.* The abstraction used in CEGAR
preserves the CFA locations and actions in the abstract state space, only the values of
variables can be abstracted away. Thus, source sets can be directly calculated using the
actions of the program (the CFA).

Theorem 2 in [2] proves that if we generate a reduced state space by exploring only source
sets of enabled actions in each state, for all executions in the original state space, there
will be an equivalent one in the reduced state space. By default, source set selective search
works for acyclic state spaces. However, with a minor supplement, cycles can be handled
as well. Theorem 2 from [2] is the following (the theorem is proven in [2]).

Theorem 2. Let S be the original state space, and Sgr be the reduced state space obtained
from S by restricting the set of actions that are explored from each state. If the following
two conditions are satisfied:

1. for each state s in Sg, the set of explored actions is a source set in s,

2. for each cycle in Sg, if an action « is enabled in all states of the cycle, then o must
be explored from some state of the cycle,

then for each state s in Sg and execution w from s in S, there is an execution w’ in Sg
such that w.v ~4 w for some transition sequence v. .

Note that states reachable from an error state are error states (if we reach an error location
in a process p, we may execute further operations on other processes, p remains in the
error location since there are no available operations from an error location). So if w leads
to an error state, w.v ends in an error state as well. This way, Theorem 2 states that if an
error state can be reached in the original state space, an error state (potentially another
one) is also reachable in the reduced state space discovered with a source set selective
search. Thus, reachability analysis performed in the reduced and the original abstract
state space yields equivalent results.

To satisfy the second condition concerning cycles, we have to detect cycles in the state
space. Cycles can be detected by performing a depth-first search from the initial state.
With DFS, edges of a graph are classified into tree, forward, back and cross edges. Each
cycle contains a back edge. If a back transition starting from state s is encountered in the
state space, all enabled actions are explored from s. This guarantees the second condition
of Theorem 2: any action that is enabled in all states of a cycle is explored from some
state of the cycle.

Back transitions could be detected during the exploration of the state space, on-the-fly.
However, it would require a depth-first search of the state space (a similar approach
can be found in [23]). To leave the possibility for other search strategies (e.g., BFS),
back transitions can be calculated differently. A sufficient method to decide whether a
transition t = (s, a, s') is a back transition is the following: if the program operation of «
is represented by a back edge in the CFA of the process, t is considered a back transition.
Note that states are partly characterized by CFA locations: without a back CFA edge, we
could never "get back" to a previously visited state. Furthermore, back edges of the CFA
can be calculated once at the beginning of the whole model checking process.

41t turns out that the filtered subset of enabled actions is not necessarily a source set in an abstract
state. The proof of the soundness of the presented algorithm in Section 4.1.2 will explain this in more
detail.

26

4.1.2 Soundness of the combination of POR and CEGAR

In this section, the soundness of using partial order reduction with CEGAR in the pre-
sented way is proven. To prove the correctness of the combination of CEGAR and POR,
we have to check that if an error state is reachable in the concrete state space of the pro-
gram, an abstract error state is reachable in the POR-reduced abstract state space. That
is, we have to prove that the composition of the POR and the CEGAR transformation is
error-preserving.

We do not have to handle the case where no error state can be reached in the concrete
state space. In this case, the abstract state space can contain an abstract error state, and
the abstractor of CEGAR may find a spurious counterexample in the abstract state space.
However, the refiner checks the counterexamples and refines the abstraction if necessary.
That is, CEGAR cannot produce a false positive (return an unsafe verdict when the
program is safe). The algorithm may not terminate, but we have seen in Section 2.2.1
that the model checking problem is undecidable as a mathematical problem.

Theorem 3. Let the abstract state space S4 be the result of an abstraction applied in
CEGAR on the concrete state space S. Let the reduced abstract state space Sar be
obtained from the original abstract state space S4 by only exploring actions returned by
Algorithm 2 from each abstract state (all enabled actions are explored when one of them
appears on a back transition).

If an error state is reachable from the initial state of the concrete state space S, an abstract

error state can be reached in the reduced abstract state space Sag. .

Proof. Technically, the concrete state space is mapped to the abstract state space, then
to the reduced state space with POR (1). For the sake of the proof, let us consider the
composition of the two transformations in a reversed order (2). That is:

POR o abstraction : S 2bstraction Sa POR Sar (1)
abstraction o POR : & L%, Sk abstraction Sra (2)

abstraction

The proof proceeds by checking that S FPOR, Sr and Sp SRra are error-
preserving transformations; it is also shown that Spa C Sagr. This proves that if an
error state is reachable in S, then an abstract error state is reachable in Sqg (which is the
statement of the theorem).

abstraction

Let f be the abstraction function of the abstraction S ———— Sa. Let Py denote
the set of actions to explore returned by Algorithm 2 for the abstract state f(s).

Let us perform the S POR g r (theoretical) state space reduction so that the explored

actions from a concrete state s is Ps = Py(,) N enabled(s).

To see that Py is a source set in s, note that enabled(s) C enabled(f(s)) since by definition
of the abstract state space, if a transition (s,«,s’) is in the concrete state space, the
transition (f(s),a, f(s')) is in the abstract state space. Now, call Algorithm 2 with Ps as
the initial actions input of the algorithm (the other two inputs are s and enabled(s)). The
dependency relation used by the algorithm is a valid dependency relation in S. Therefore,
based on Theorem 1, the returned set P, is a source set in s. Let us assume that P, # P,
i.e., the algorithm has added at least one action « € enabled(s)\ Ps. But a € enabled(f(s))
as well, and Ps C Py(y), so Algorithm 2 would have had to add « to Py, when we used the
algorithm to calculate Py(,): since future_actions(s,a) C future__actions(f(s),a), if a is
selected in line 5 of Algorithm 2 during the calculation of P!, « is also selected during the

27

calculation of Py(,. This is contradiction because a has not been added to Py(). Thus,
P! = Ps, which implies that Ps is a source set for any state s € S, indeed.

So the explored actions in Sg form source sets in each state of Sg: we can obtain Sg from

S with a source set selective search. The correctness of a source set selective search is
. POR . . .

proven in [2], so S —— Sg is an error-preserving transformation.

Let us perform the transformation Sgr abstraction, Sra with the same abstraction function

f. Abstraction is error-preserving: if there is an error state e € Sg, then its abstract state
f(e) € Sgra is an abstract error state by definition.

Now, let us see that Sp4 C Sag, that is any state or transition present in Sra is present
in Sur (in other words, if a state s is reachable in Sg4 from its initial state, s is reachable
in S4p from its initial state). Let sp be the initial state of S. Then sy € Sg, f(s0) € Sgra,
f(s0) € Sq and f(sp) € Sar. If a state s’ is reachable in Sgy, there is a state s € Sg so
that f(s) = s’ and s is reachable in Sg. Since Ps; C Py, for any state s € S, if a state s
is reachable in Sg, f(s) is reachable in S4r. We got that if a state s’ is reachable in Sgp4,
s’ is also reachable in S4gr, so Sga C Sag holds indeed.

Let E(SP) denote the set of error states reachable in a state space SP from its initial
state. The statement of the theorem is the following: Je € E(S) = 3¢’ € E(SaR).

s Lok gp being an error-preserving transformation means e € E(S) = 3¢’ € E(Sg).

The abstraction function maps €’ to the abstract state f(¢’) € Sga which is an error state
in Sra (by definition of abstract error states): f(e’) € E(Sra). Based on Spa C Sar,
f(¢') € E(Sar) which proves the theorem. O

Note that the proof does not assume that the used dependency relation of actions is valid in
the abstract state space S4. For certain concrete types of abstraction (e.g., explicit-value
abstraction), it could be easily proven that the dependency relation is valid in the abstract
state space. Then, we would not need the reversed order of transformations (abstraction o
POR) for the proof because we could simply say that Ssp is obtained from S4 with a
source set selective search which is proven to be error-preserving. However, without any
assumption on the abstraction function, the dependency relation is not necessarily valid in
Sa, and SR is not necessarily the result of a source set selective search of S4. This way,
the proof shows that the above combination of CEGAR and POR is correct independent
of the type of the used abstraction.

4.2 Abstraction-Aware Partial Order Reduction

The previous sections of this chapter introduced the combination of a traditional partial
order reduction algorithm with a CEGAR-based model checking algorithm. However,
this integration is rather loose so far: the point has been identified in CEGAR (i.e., the
expansion of the abstract state space) where POR can be applied, but the two algorithms
have "no further contact’.

In this section, a novel approach of integrating POR with CEGAR is presented where
POR uses extra information from the current state of the CEGAR algorithm. I refer to
this approach as abstraction-aware partial order reduction (AAPOR).

28

4.2.1 Basic Concept and Motivation

In Section 2.2.2, two common forms of abstraction has been introduced: explicit-value
abstraction and predicate abstraction. The information describing an abstraction is called
precision. In case of explicit-value abstraction, the precision is the set of tracked variables.
The precision of predicate abstraction is the set of tracked predicates.

Let us use the term abstract variable for an element of the precision. In explicit-value
abstraction, a tracked variable is an abstract variable, while in predicate abstraction, a
predicate is an abstract variable. The notation x € II is used to denote that abstract
variable x is present in precision II (x is one of the tracked variables in explicit-value
abstraction or x is a tracked predicate in predicate abstraction). Let orig(y) denote
the set of concrete (original) variables that appear in x (in explicit-value abstraction,
orig(x) = {z} if x is a tracked variable; for a predicate y > z, orig(y > z) = {y, z}).

This information, the precision can be used to boost partial order reduction. If a vari-
able z is not present in the current precision, it is unnecessary to consider two actions
dependent just because they both use x (if there is no other global variable that they
both access) since the value of x is ignored in the current abstraction. With explicit-value
abstraction, it is enough to take the tracked variables into consideration when calculating
dependency between actions. Similarly, when using predicate abstraction, two actions are
only dependent if there is a predicate that has variables from both actions.

Example 5. Let us have two processes. Let the model checking reach a state s where the
only enabled actions are af{x =2 -z} and f{y = v — 1} from different processes.

a. If we calculate a source set in this state in the traditional way, we need to include
both o and B in our set because they both use the object x, so they are dependent
regardless of the applied abstraction.

b. Let us assume, that we use explicit-value abstraction and the set of tracked variables
is currently 11 = {y,z}. Since # x € 1 such that x € orig(x) (x is not in the
precision) and x is the only object that both o and [accesses, we can consider o
and B independent in the current abstraction.

c¢. Now, let us use predicate abstraction and let the set of tracked predicates be I1 =
{y >2,24+2=0}. Asx € orig(x+2z = 0) (there is a predicate about x in I1), o and
B is considered dependent in this abstraction even with the proposed method. They
are also dependent if Il = {y > z} since y,z € orig(y > z), that is the predicate
y > z uses variables from both o and 5. However, the two actions are independent
with precision I1 = {y > 0,z = 2}.

The motivation for developing this abstraction-aware POR algorithm is to make fewer
actions dependent. By decreasing the dependency in the model, the reducing effect of
partial order reduction hopefully increases resulting in better performance.

The introduced concepts are illustrated in a small case study on a complete multi-threaded
program with figures about the abstract state spaces in Section 6.1.

4.2.2 Description of the Algorithm
First, a simple version of the algorithm is described, then an extension is explained that

makes the proposed algorithm compatible with lazy state space computation [28]. Finally,
the correctness of the presented methods is proven in this section.

29

4.2.2.1 Simple Version

When using a basic version of CEGAR, the abstraction-aware POR algorithm is quite
simple. However, some lazy computation can improve CEGAR, which requires further
steps to preserve the correctness of AAPOR. This will be explained in detail later in this
section. Let us start with the simple version.

The criterion for applying the simple version of AAPOR is to start building the abstract
state space from scratch in every iteration of CEGAR. In this case, only the calculation
of dependency is different compared to Algorithm 2 presented in Section 4.1. Algorithm 3
is the modified algorithm with differences highlighted.

The