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SZAKDOLGOZAT FELADAT

Telbisz Csanád Ferenc
Mérnökinformatikus hallgató részére

Részleges rendezés redukció többszálú programok
absztrakcióalapú formális verifikációjának támogatásához a

Theta keretrendszerben
A  kritikus  beágyazott  rendszerek  világában  mind  a  mai  napig  nehézséget  jelent  a  többmagos
processzorok hatékony kihasználása, főként a komplexitás biztonsági implikációi miatt. Hagyományos
szoftververifikációs módszerek, mint például a tesztelés, nem tudják megfelelő biztonsággal kiértékelni
a több szálon futó programok viselkedését. 
Egy  megoldást  nyújthat  erre  a  problémára  a  modellellenőrzés,  mely  egy  formális  megközelítéssel
bizonyíthatja  a  programok biztonságát,  illetve adhat ellenpéldát.  Azonban a  tipikusan nagyon nagy
(bizonyos esetekben végtelen) állapotterek gátolhatják a modellellenőrzés praktikus felhasználását. Egy
módszer ezen probléma megoldására az absztrakció, melynek segítségével csoportosíthatóak a program
állapotai, és ezzel lényegesen kisebb állapottér fölött szükséges csak a modellellenőrzőnek működnie.
Ezt használja ki az ellenpélda alapú absztrakció finomítás (CEGAR) algoritmus, mely automatikusan
meg tud találni optimális absztrakciós szinteket.
Többszálú  programok  esetén  még  rosszabbul  skálázódik  a  modellellenőrzés,  ezért  specializált
módszerek szükségesek a komplexitás leküzdéséhez. Egy ilyen módszer a részleges rendezés redukció
(POR), mely ekvivalens lefutásokat nem fog redundánsan felderíteni. 
Azonban  tovább  lehet  optimalizálni  a  modellellenőrzés  folyamatán  ha  a  két  megközelítést  együtt
alkalmazzuk, és a PORt a CEGAR által generált absztrakt állapottéren végezzük el. Ezen megközelítés
kidolgozása és bemutatása a Hallgató feladata szakdolgozatának keretében.
A Hallgató feladatának a következőkre kell kiterjednie:

 Mutassa be a POR technikák absztrakcióalapú verifikációba történő integrálását
 Elemezze, hogyan lehet a CEGAR konfigurációs lehetőségeit kihasználva minél hatékonyabbá

tenni a fenti megközelítést
 Implementálja a bemutatott algoritmusok prototípusát a Theta keretrendszerben
 Értékelje ki az implementált  algoritmusok teljesítményét  az SV-COMP verifikációs verseny

benchmark készletén
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Kivonat

A többmagos processzorok biztonságkritikus rendszerekben történő térhódításának kö-
szönhetően egyre gyakrabban használnak többszálú programokat ilyen rendszerekben is,
hiszen így lehet legjobban kiaknázni a párhuzamos számítás előnyeit. A szoftververifiká-
ció komplexitása új szintre emelkedik a párhuzamosság megjelenésével a szálak nagyszá-
mú lehetséges átlapolódása miatt. A komplexitásnövekedés eredménye, hogy a megfelelő
tesztlefedettség elérése még nagyobb kihívást jelent, a naiv verifikációs technikák pedig
gyakorlatilag használhatatlanná válnak. A részleges rendezés redukció (POR) hatékony
modellellenőrzési megközelítés a párhuzamosság kezelésére. Az ellenpéldaalapú absztrak-
ciófinomítás (CEGAR) pedig eredményes absztrakción alapuló technika állapot térben
történő elérhetőségvizsgálatra.

A részleges rendezés alapú redukció aktívan kutatott területe az utóbbi évtizedeknek.
Számos algoritmust publikáltak azzal a céllal, hogy minél nagyobb redukció által minél
jobb teljesítményt érjenek el. Jelen dolgozatomban bemutatok néhányat a terület leg-
meghatározóbb algoritmusai közül. Ugyanakkor ezek a módszerek többnyire egy egyszerű
állapottér bejárásra építenek csupán, ami korlátozza a további optimalizálási lehetősége-
ket.

Munkámban új megközelítését mutatom be a dinamikus POR technikák absztrakció-
alapú verifikációba történő integrálásának. Az új módszer egy program utasításai között
épített függőségi reláció számítása során az aktuálisan alkalmazott absztrakciót leíró in-
formációt is felhasználja. Ha két utasítás közti összefüggőség forrása el van absztrahálva,
nyugodtan tekinthetjük ezt a két utasítást függetlennek. A modellbeli összefüggőség mér-
tékének csökkenésével a POR nagyobb redukciót képes elérni. A CEGAR technikákat
többféle módon is optimalizálhatjuk, például lusta kiértékeléssel. Dolgozatomban kité-
rek arra is, hogyan lehet a bemutatott absztrakciót figyelembe vevő POR algoritmust az
állapottér lusta kiértékelésű számításával kombinálni. A bemutatott algoritmusok egy le-
hetséges alkalmazásaként vázolom, hogyan lehet adatváltozókat érintő versenyhelyzetek
detektálásához POR alapú redukciót használni. Végül kiértékelem a prezentált algoritmu-
sok teljesítményét.
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Abstract

As multi-core processors gain popularity in safety-critical systems, multi-threaded pro-
grams are increasingly used in these systems to exploit their full potential. Concurrency
introduces a new level of complexity into software verification due to the great number of
possible thread interleavings. Achieving satisfying test coverage is even more challenging,
and naive verification techniques become practically infeasible as a result of this com-
plexity. Partial order reduction (POR) is an effective approach to handle concurrency in
model checking. Counterexample-Guided Abstraction Refinement (CEGAR) is an efficient
abstraction-based technique for checking reachability in a state space.
Partial order reduction has been an active field of study in recent decades. Several al-
gorithms have been published with the aim of achieving better performance by greater
reduction. Some state-of-the-art partial order reduction algorithms are presented in this
report. Mostly though, these algorithms only assume a simple state space exploration
which limit the possibilities for further optimization.
In this work, I present novel ways to integrate a dynamic partial order reduction algorithm
into an abstraction-based verification process. Information is exploited about the applied
abstraction when building a dependency relation on operations of a program. If the source
of dependency between certain operations is abstracted away, they need not be considered
dependent. By decreasing the dependency in the model, the reducing effect of partial order
reduction is increased. Counterexample-Guided Abstraction Refinement (CEGAR) has
several optimizations including lazy computation. I show how the proposed abstraction-
aware partial order reduction algorithm can be combined with the lazy computation of
the state space. As an application of the presented algorithms, I introduce how partial
order reduction can be used for data race detection. Finally, I evaluate the performance
of the proposed algorithms.
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Chapter 1

Introduction

Rapid development in technology led to huge advancements in microprocessor systems.
Today, multi-core processors are available for various targets from personal computers
through smartphones to safety-critical systems. In a critical system, the increased com-
puting capacity of a multi-core processor may add extra resources to the critical func-
tionalities. This reason has lead to the increasing popularity of multi-core processors and
multi-threaded programs in even critical systems.
Nonetheless, functionally correct behavior is still crucial in safety-critical systems. Al-
though concurrency brings an additional complexity to the development, the need for safe
operation and safety requirements remain a central element of critical systems.
Unfortunately, concurrent software design faces several difficulties. The development of
concurrent software requires more prudence from developers as it is easier to overlook
unintended behavior in a multi-threaded program. A concurrent program inevitably has
a great number of possible thread interleavings. It can be challenging for a developer to
consider all possible interactions of the threads.
Testing can efficiently find programming errors. However, even in a single-threaded ap-
plication, testing is insufficient to prove correctness due to the large number of possible
inputs. In a multi-threaded program, the number of possible executions can be exponential
in the number of operations and threads. Thorough testing becomes practically infeasible
when dealing with concurrency.
Formal verification can prove safety guarantees for a system. Verification is a challenging
task in itself, as the number of possible behaviours can be huge. The verification task is
often to determine whether an error location can be reached in the program. Basically, this
question can be answered by searching the state space of the program for an error state.
Unfortunately, the number of states grows exponentially with the number of variables.
This phenomenon is called the state space explosion problem [20].
An efficient approach to handle this vast complexity is abstraction [26]. By focusing on
some parts of the problem while ignoring other details, we get a smaller representation of
the problem. We may have a chance to solve the original problem by analyzing the abstract
representation. If we fail to solve the problem using this representation, we can refine our
abstraction by considering more details. CEGAR (Counterexample-Guided Abstraction
Refinement) is an efficient abstraction-based model checking algorithm [19]. It follows this
concept of iterative refinement. Abstraction can most efficiently be applied to data: the
values of some variables can be represented by fewer equivalence classes [28].
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Concurrency introduces a new level of complexity to software verification due to the great
number of thread interleavings. By default, the whole state space has to be explored be-
cause a violation of the safety requirement may occur anywhere. Unfortunately, the size of
the state space explodes exponentially due to the number of possible thread interleavings.
Verification of concurrent programs has to deal with this complexity.
Partial order reduction (POR) is a widely known technique for handling concurrency in
model checking [36]. The core concept of POR is to identify equivalent executions (traces).
Then, it is enough to check a single representative from each equivalence class. Identifying
equivalent interleavings is based on the interaction of threads. Dependency is defined
between the interacting program operations.
While partial order reduction is an effective technique for handling concurrency, abstrac-
tion is an efficient approach to handling data in model checking. This work aims to
develop a highly performant verification algorithm by combining these two model check-
ing paradigms. I integrate POR into a CEGAR-based model checking algorithm, and I
show how these algorithms can be applied together.
I also present a novel algorithm that exploits the advantages of using POR in an
abstraction-based context. The proposed method is called abstraction-aware partial order
reduction, where the precision of the abstraction is used to boost the reduction power of
POR. I defined a novel dependency relation in the abstract representation of the state
space. The size of the new dependency relation is smaller than the size of the original
relation. This allows POR to achieve more reduction and thus better performance. I show
an approach to combine the new algorithm with the lazy extensions of CEGAR [28] to
further increase the performance of the verification.
I have implemented and contributed the proposed methods to the open-source model
checking framework Theta [38]. I compared the presented approaches to existing so-
lutions on the widely-used SV-COMP benchmark programs (SV-COMP is a prestigious
competition for software verification [10]). The introduced approach leads to performance
gains on the benchmark problems compared to the traditional POR and CEGAR ap-
proaches.
The main scope of my work is error location reachability analysis. However, I briefly
introduce how partial order reduction can be used for the verification of another type
of safety requirement: data races [29]. Data races can occur in a program when non-
atomic operations from different threads modify the same memory location. This leads to
undefined behavior which is best avoided. For this problem, a slightly different formulation
is needed.
This thesis is structured as follows. Chapter 2 introduces the essential concepts and
definitions necessary for understanding this work. The basics of model checking are ex-
plained, along with a quick overview of CEGAR and POR. In chapter 3, the related work
is presented. Chapter 4 explains how POR can be combined with CEGAR. First, the
used POR algorithm is described in detail, along with its integration into CEGAR. Then,
abstraction-aware partial order reduction is explained. The soundness of the algorithms
presented in the chapter is proven. Some implementation details are also provided at the
end of this chapter. Chapter 5 introduces how POR can improve data race detection.
Chapter 6 evaluates the work. It starts with a case study, then the findings of benchmark
tests are summarized. Finally, chapter 6 draws conclusions and proposes possible future
works.
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Chapter 2

Background

This report assumes that the reader is familiar with the basic concepts of concurrent soft-
ware design and formal software verification. Nevertheless, to avoid the misunderstanding
of used concepts and notions, definitions are introduced in this chapter.

2.1 Formal Representation of Software Programs

Though high-level languages (such as C) are convenient for developers, their verification
would require a formal model of the language semantics, which can be quite complicated
[9]. Thus, for verifying a program written in a high-level language, its source code is
transformed into a low-level formalism that is easier to verify.
One such formalism is the Control Flow Automaton (CFA) [12].

2.1.1 Control Flow Automata

A CFA represents a single-threaded program with the following semantics.

Definition 1 (Control Flow Automaton). A CFA is a tuple CFA = (V, L, l0, E),
where:

• V is a set of variables (each v ∈ V has a domain Dv: the possible values of v),

• L is a set of control locations (it can be considered as the possible values of the
program counter),

• l0 is the initial location,

• E ⊆ L × OPS × L is the set of transitions. A transition is a directed edge in the
CFA with a source control location, a target control location, and one operation. An
operation (op ∈ OPS) can be:

– a deterministic assignment of a variable (v = expr), where the value of the
expression expr becomes the new value of the variable v ∈ V ,

– a non-deterministic assignment of a variable (havoc v), where the new value of
the variable v ∈ V can be anything from its domain Dv,

– a guard condition ([cond]). A transition with a guard can only be executed if
the guard expression is evaluated to true. �
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void main() {
int n;
scanf("%d", &n);
int f = 1;
while(n > 0) {

f *= n;
n--;

}
}

(a) C source code

havoc  nl0

[n > 0]

[n ≤ 0]

l1

f  =  f * nl2

l4

n  =  n - 1

l3
f  = 1l1

(b) CFA of the program

Figure 2.1: Small example to illustrate a CFA

Let us illustrate control flow automata with the following simple example.

Example 1. The program in Figure 2.1a calculates the factorial of the given number: the
value of variable f is n! at the end of the execution of this program.

Figure 2.1b depicts the CFA of this program. The edges of the CFA correspond to the
operations of the program (including condition checks). l0 is the initial location. Note
that a value from user input is assigned to n, which translates to the non-deterministic
assignment havoc n.

2.1.2 Formal Representation of Concurrent Programs

Since the threads of a multi-threaded program are like "single-threaded programs", which
can be represented with a CFA, it is reasonable to use an extended form of the CFA to
model concurrent programs: we can have a set of processes, where each process has its
own CFA [8].

Definition 2 (eXtended Control Flow Automaton (XCFA)). An XCFA is a tuple
XCFA = (Vg, P ), where:

• Vg is a set of global variables,

• P is a set of processes. A process is a tuple p = (Vl, CFA), where:

– Vl is a set of local variables,
– CFA is a CFA (whose variables are V ⊆ Vg ∪ Vl) extended with the following

operations: start thread and join thread, atomic begin and atomic end.

The processes of an XCFA step (take a transition) asynchronously. �

A start thread operation creates a new process pnew (and marks pnew ∈ P as an active
process) and starts the concurrent execution of the new process at its initial CFA loca-
tion. A join thread operation is disabled until the specified process p terminates: after
p has terminated, the join thread operation can be fired. Atomic begin, and atomic end
operations mark atomic blocks: while the execution of a process is inside an atomic block,
all other processes are disabled. The semantics of these operations are explained in more
detail in the next section.

9



2.1.3 State Space of a Program

Before introducing the state space of a (multi-threaded) program, a general definition is
given for transition systems.

2.1.3.1 Transition Systems

Transition systems have been defined variously over the years of model checking [7, 23].
In this report, the following definition is used:

Definition 3. A transition system is a tuple (S, A, T, I), where:

• S is a set of states,

• A is a set of actions,

• T ⊆ S ×A× S is a set of transitions, and

• I is a set of initial states. �

An action α is said to be enabled in a state s if there is a transition t = (s, α, s′) ∈ T for
some s′ ∈ S. The following notations are used:

• s
α−→ s′ denotes the transition (s, α, s′),

• post(s, α) = {s′ ∈ S : ∃(s, α, s′) ∈ T}, and

• enabled(s) is used to denote the set of enabled actions in s.

A transition system is action-deterministic if |I| ≤ 1 and |post(s, α)| ≤ 1 for any state s ∈ S
and action α ∈ A [7]. The state space of a program is not action-deterministic due to
havoc statements (|post(s, havoc x)| = |Dx|), and uninitialized variables (|I| > 1 possibly).
However, unknown is a possible value for variables when using abstraction (see details
later), which means that an uninitialized variable or a variable after a non-deterministic
assignment gets the specific value unknown. This way, the state space becomes action-
deterministic.
Partial order reduction algorithms are formulated for action-deterministic transition sys-
tems as a common practice [6, 7, 22]. Sometimes, instead of using the term action-
deterministic, it is said that control non-determinism is allowed [2]. Furthermore, partial
order reduction can be applied even for non-action-deterministic systems, though that
requires slightly different formulations [37].

2.1.3.2 State Space of a Control Flow Automaton

The state space of a program is a transition system that consists of all the possible and
reachable states and transitions between them, as defined below.
A state of a CFA represents a control location and the values of the variables at a certain
point during the operation of the program: s = (l, d1, d2, ..., dn), where:

• l ∈ L is the location that the state represents,

• d1, d2, ..., dn are the values of the variables (vi = di, vi ∈ V , di ∈ Di, 1 ≤ i ≤ n = |V |).

10



A state of an XCFA = (Vg, P ) represents the control locations of all processes and the
values of all variables (global and local variables) at a certain point during the operation
of the program: s = (l1, l2, ..., lp, d1, d2, ..., dn), where:

• lj ∈ Lpj is the current location of process pj , for 1 ≤ j ≤ p = |P |
(pj = (Vlpj

, CFApj ), CFApj = (Vg ∪ Vlpj
, Lpj , lpj0, Epj )),

• vi = di, the current value of variable vi, for 1 ≤ i ≤ n = |V |
(vi ∈ V , di ∈ Dvi , V = Vg ∪ (⋃p∈P Vlp)).

An action of a transition is an operation that the program executes. An action is enabled
in a state if that operation can be performed in that state of the program. The process
of an action refers to the process of the action’s corresponding program operation: the
process of an action α is denoted with pα. A process is active or enabled in a state if it
has any enabled actions in the state.
A transition with action α leads to the new state of the program after executing the
operation represented by α. The location of the process of α is the source CFA location of
α in the source state, and the target location of α in the target state. Multiple transitions
can have the same action (e.g., x++ from a state where x = 0 or from another state where
x = 1).
The operations of an (X)CFA manifest in different ways in the state space:

• For an assignment s
v=expr−−−−→ s′, the value of v in s′ is the value of expression expr

evaluated in s. The location of the statement’s process is the source location of the
statement in s and the target location in s′.

• For a havoc v statement, there are several transitions, |Dv| exactly, leading to differ-
ent states. The location of the statement’s process changes with each transition as
usual (the target CFA location of the statement appears in the target states of the
new transitions). The value of v is different in each target state: the values range
over the domain of v.

• An action with a guard condition [cond] is enabled in each state s where the location
of the action’s process is the source location of the action, and expression cond
evaluates to true in s.

• For a start thread action s
start thread pnew−−−−−−−−−−−→ s′, the location of the parent process is as

usual in s and s′. In s′, a new field appears in the state description that stores the
location pnew: the value is the initial location of the CFA of pnew. Also, new fields
appear for each local variable of pnew with their initial value (if a local variable is
uninitialized, there are several transitions for this start thread operation similar to
a havoc statement).

• A join thread p operation is enabled in each state s where the location of the action’s
process is the source location of the action, and p is in its final location.

• An atomic begin action disables actions from other processes, that is, no action of
another process is enabled in any state reachable from the target state of the atomic
begin action until a transition with an atomic end operation. Actions from other
processes may be enabled starting from the target of the atomic end operation.
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An initial state of a program is a state where all processes are in the initial location of
their main procedure. The values of the variables in an initial state can vary based on
the language the program is written in. Uninitialized variables either contain memory
garbage (as local variables in C [29]), resulting in several initial states per process, or they
are initialized automatically to a default value (as in Java [30]), resulting in one initial
state per process.
Since model checking includes searching the state space, the efficiency of a verification
algorithm largely depends on the size of the state space, that is, on the number of control
locations and variables in the program and the size of their domains. To represent even a
single 32-bit integer variable, 232 states would be necessary. With more variables, it would
grow exponentially: this is called the state space explosion problem [20]. Thus, efficient
algorithms are essential to overcome this problem.

2.2 Formal Verification

Formal software verification aims to prove certain properties of a program mathematically
[18]. Among others, verified properties can be reachability criteria (whether a certain error
state is reachable with any execution of the program), memory-safety (no memory leak or
other memory handling issue), or the problem of termination (whether all executions of
the program will terminate). In the scope of this work, reachability criteria are considered
exclusively.

2.2.1 Model Checking

Model checking is a formal verification technique where properties are verified by analyzing
the state space of the program [26]. In general, the input of a model checking algorithm
is a model (here, an XCFA) and a formal requirement. The output of such algorithms is
a verdict: the model is either safe (it is mathematically proven to be safe) or unsafe (a
counterexample is provided where the requirement is violated).

MODEL
CHECKING


ALGORITHM

MODEL

(source code / CFA)

FORMAL
REQUIREMENT

SAFE

+ mathematical proof

UNSAFE

+ counterexample

Figure 2.2: Model checking in general.

As for the formal requirement, in reachability analysis, certain points of the program
under verification are marked as unsafe. If any possible program execution reaches one
such point, the reachability criterion is said to be violated. In the introduced formalism,
the (X)CFA, these marked points (locations) are called error locations. So the formal
requirement is that no error location is reachable from the initial location(s) of the (X)CFA.
A state is an error state in the state space of the program if its location is an error location.
In the case of a multi-threaded program, a state is an error state if any of the program’s
processes is in an error location in that state.
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The mathematical problem of model checking is undecidable. Consider any program
with an error location at its exit point. To prove that this error location is unreachable
is equivalent to answering whether this program always terminates. The termination
problem is undecidable [39]. Verification techniques have to face this problem and provide
usable algorithms that can verify as much software as possible.

2.2.2 Counterexample-Guided Abstraction Refinement (CEGAR)

CEGAR is an abstraction-based model checking algorithm [19]. It uses abstraction to
handle the problem of state space explosion. CEGAR starts from a coarse abstraction of
the problem and iteratively refines the abstraction until the problem can be solved. The
more coarse the abstraction is, the more details are ignored. This way, there is a chance to
answer the original problem by solving a much simpler abstract problem. If the abstract
problem is too generic to provide an answer, the abstraction must be refined.
The core of the algorithm is the CEGAR-loop which consists of two main parts: the
abstractor and the refiner (see Figure 2.3).

Expand

Abstract counterexample

Abstractor Prune

Refined precision

RefinerARG

Safe Unsafe

+ counterexample

Initial precision

Figure 2.3: The CEGAR-loop.

The abstractor builds the abstract state space (in fact, an abstract reachability graph,
ARG [14]) where abstract states consist of multiple concrete states. A concrete state is an
error state if the control location of one of the processes is marked as an error location.1
An abstract state is considered an abstract error state if it contains at least one concrete
error state. The abstractor tries to prove that no abstract error state is reachable in the
abstract state space. If no abstract error state is reachable, the algorithm terminates with
a safe verdict since no concrete error state can be reached when its over-approximation is
unreachable. If an abstract error state is reachable, the abstractor provides an abstract
counterexample to the refiner.
The refiner checks whether the given counterexample is feasible (a concrete error state is
reachable, indeed) or spurious (a concrete error state is not reachable and the abstract
counterexample was the result of the abstraction) [27]. In the first case, the algorithm
terminates with an unsafe verdict and the found counterexample. While in the latter case,
the abstraction is refined, and the unreachable abstract states are removed (pruned) from
the abstract state space.

1Defining error states as states containing an error location is perfect for error location reachability anal-
ysis which is in the main focus of this work. However, for other formal requirements, another interpretation
of error states is necessary (c.f. data races in Chapter 5).
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In practice, when CEGAR is applied for software verification, information about data flow
(e.g., values of variables) turned out to be most beneficial to abstract away [15]. Typical
forms of abstraction are explicit-value abstraction [13] and predicate abstraction [25].
With explicit-value abstraction, the concrete values of certain variables are tracked while
other variables are abstracted away. In the refinement step, new variables are added to
the set of tracked variables. When evaluating an expression (e.g., a guard condition or the
value for an assignment), untracked variables get an unknown value, meaning it can be
anything from the domain of the variable. If the concrete value of the expression cannot
be calculated due to unknown values, the value of the whole expression will be unknown.
Predicate abstraction keeps track of logical predicates about variables (e.g., x = 1 and
y > 0). In the refinement step, a new set of tracked predicates is calculated. When
evaluating an expression, the result will be unknown if the tracked predicates do not
imply the expression.
The abstraction can be represented formally with an abstraction function [7]. The ab-
straction function is a function f : S → Ŝ (where S is the set of concrete states and Ŝ is
the set of abstract states)2. Multiple concrete states can be mapped to the same abstract
state. The abstract state space over-approximates the concrete state space. An abstract
state s′

0 is initial if f(s0) = s′
0 for the initial state s0 of the concrete state space. If a

transition (s1, α, s2) is in the concrete state space, there is a transition (f(s1), α, f(s2)) in
the abstract state space. An abstract state e′ is an error state if there is a state e ∈ S
such that f(e) = e′ and e is an error state of the concrete state space.

a1

a3

a2

a4

(a) Abstract state space Ŝ with an abstract counterexample

a1 a2

a3 a4

s2

s1 s3

s4

s5

s6 s7

s8

(b) Feasible counterexample in S1

a1 a2

a3 a4

s2

s1 s3

s4

s5

s6 s7

s8

(c) Spurious counterexample in S2

Figure 2.4: CEGAR counterexamples

2In some cases in practice, a concrete state can be represented by multiple abstract states [15]: the
abstraction function then maps to a set of abstract states.
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Example 2. Consider a model checking process where the abstractor provides the abstract
counterexample highlighted in Figure 2.4a. This counterexample leads from the abstract
initial state a1 to the abstract error state a4 in the abstract state space AS. The abstract
state space is an over-approximation of the concrete state space. So the refiner has to
decide whether the abstract counterexample is feasible or spurious.

First, let us assume that the concrete state space abstracted by AS is S1 from Figure 2.4b.
In this case, the counterexample is feasible since we can find a transition sequence for
the abstract counterexample in the concrete state space starting from the initial state s1
leading to the error state s8.

However, S2 from Figure 2.4c can also be the concrete state space whose abstraction is
AS. The counterexample is spurious now, as there is no path from s1 to s8 in S2.

Let f1 be the abstraction function f1 : S1 → Ŝ. f1(s1) = a1, and s1 is the initial state
of S1, so a1 is initial in Ŝ. If si is within the bounding box of aj in Figure 2.4b, then
f1(si) = aj. s8 is an error state, so f1(s8) = a4 is an abstract error state. Transition
(s1 → s5) is in S1, so the transition (a1 → a3) = (f1(s1) → f1(s5)) is in Ŝ. Similarly,
transition (s4 → s3) is in S1, so the transition (a2 → a2) = (f1(s4)→ f1(s3)) is in Ŝ.

2.3 Partial Order Reduction (POR)

Generally, the execution order of operations from different threads is unspecified in a multi-
threaded program. Thus, when such a program is verified, it is obviously insufficient to
check only a single randomly chosen thread interleaving (consider the possible interleavings
of the threads in Figure 2.5a: the printed result can be anything from {00, 01, 10, 11}).
A definitely correct approach is to check every possible execution. While it yields an
accurate result, it suffers from the problem of combinatorial explosion. The intuitive idea
to reduce the number of interleavings to check is that there are independent operations
whose order of execution is irrelevant: their swapping (if they are neighbors) does not
change the outcome. This way, executions can be grouped into equivalence classes [32, 23].
Any element of a class can be transformed into any other execution in the same class by
only swapping independent neighbors. Then, it is enough to check only one execution
from each equivalence class. This idea can be generalized to transition systems.

2.3.1 Dependency Relation

In the case of transition systems, the dependency relation used to be formulated on a
general level [7]:
Definition 4. Let TS = (S, A, T, I) be a deterministic transition system. For s ∈ S,
α, β ∈ enabled(s) (α ̸= β), actions α and β are independent in s if:

• β ∈ enabled(post(s, α)) and α ∈ enabled(post(s, β)), and

• post(post(s, α), β) = post(post(s, β), α).

α and β are dependent in s if they are not independent in s. �

The first condition means that independent actions can neither disable nor enable each
other. The second property states that independent actions are commutative. Some-
times, dependency of transitions is used in this report: by the dependency of transitions,
dependency of their actions is meant.
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It is rather impractical to check this definition of independence. Checking these conditions
would require calculating the successor states of s after α and β and after β and α. This
is exactly what partial order reduction tries to avoid. Fortunately, actions are program
operations when our transition system models a program. Sufficient conditions can be
given for two actions to be independent using the semantics of program operations [23].
Intuitively, when speaking about a multi-threaded program, two operations are indepen-
dent if neither their control part nor their data part is in conflict. The following conditions
formalize this intuition. Two actions α and β are independent if:

• α and β are not the actions of the same process, and

• the set of objects that are accessed by α is disjoint from the set of objects accessed
by β.

Note: in our case, shared accessed objects (that operations from different processes,
threads can access) are global variables, but in general, it could mean any object (e.g.,
a file). Also, note that special attention is needed at operations that create or destroy a
process.
Independence could be defined more sophisticatedly, e.g., by distinguishing read and write
operations on shared objects (two read operations on the same object could be considered
independent) [33]. This way, the overall dependency between operations would decrease.
At the same time, this work focuses on the basic concepts of partial order reduction and
not on such enhancements.
It is easy to check that these conditions are sufficient indeed for two actions to be inde-
pendent. An action α can only enable or disable another action β if either they are in the
same process or α modifies the value of a global variable that β uses in its guard condi-
tion. In both cases, the actions are dependent based on the introduced conditions. As for
commutativity, the swapping of two actions can only lead to different states if their sets of
accessed objects are not disjoint: the actions are dependent according to the introduced
conditions, again.

2.3.2 Partial Orders

Definition 5 (Partial Order, Total Order, Linearization). On a set S a relation
R ⊆ S × S is a partial order if R is reflexive, antisymmetric, and transitive.
A partial order R is a total order if for all s1, s2 ∈ S either (s1, s2) ∈ R or (s2, s1) ∈ R.
A linearization of a partial order R on S is a total order R′ ⊆ S × S such that R ⊆ R′. �

A partial order R can be visualized by a directed graph whose vertices are the elements
of the set S, and there is an edge from s1 ∈ S to s2 ∈ S if and only if (s1, s2) ∈ R.
A concrete execution (also called thread interleaving) of a program can be considered as
a total order R on the set of operations where, for all op1, op2 ∈ OPS, (op1, op2) ∈ R iff
op1 is executed before op2. In the case of multi-threaded programs, a partial order can
be associated to an execution using the concept of dependency where the partial order
relation consists of the dependent ordered pairs of operations (operations are in execution
order in the ordered pair). The concrete execution R is the linearization of this partial
order. [23]
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Thread T1 Thread T2
a: x = 0;
b: a = 1;
c: print(x);

d: x = 1;
e: b = 1;
f: print(x);

(a) Basic two-threaded program

b

e

c
a

d f

(b) Visual representation of the partial or-
der for execution E = (a, d, b, e, c, f).

Figure 2.5: Multi-threaded program with a partial order for an execution

Example 3. Let’s take threads T1 and T2 from Figure 2.5a and the execution E =
(a, d, b, e, c, f). E is a total order on the set of the six operations.

Operations a, d, c, f are dependent with each other since they all use the global variable
x. Operations of the same thread are dependent by definition. The partial order with the
dependent operation pairs can be seen in Figure 2.5b. Execution E is the linearization of
this partial order.

E′ = (a, b, d, c, e, f) is also the linearization of the same partial order.

2.3.3 Partial Order Reduction Techniques

Executions - or generally transition sequences in a transition system - that are the lin-
earizations of the same partial order yield the same result since dependency is completely
"included" in the partial order. That is, partial order is the formalization of the equiva-
lence class intuitively used in the introduction of this section. Such an equivalence class
is called a Mazurkiewicz trace [32]. Any two transition sequences in a Mazurkiewicz trace
can be obtained from each other by successively swapping adjacent independent actions.
Therefore, it is sufficient to check a single transition sequence (linearization) from each
Mazurkiewicz trace (partial order) in a verification process. This is the basic concept of
partial order reduction. [23]
Partial order reduction methods construct a reduced transition system and explore only
this smaller reduced state space instead of the original one. For the correctness of such
an algorithm, it has to be guaranteed that at least one transition sequence from each
equivalence class is completely included in the reduced transition system. In practice,
the reduced state space is "constructed" by calculating a sufficient subset of outgoing
transitions for exploration from a state. When exploring the state space, we only proceed
through transitions in the calculated subset. This way, only part of the state space is
explored: the reduced state space.
There are two main approaches to partial order reduction: static and dynamic POR [7].
In the static version, the model (e.g., the CFA of the program) is analyzed and the reduced
state space (or its high-level description) is generated prior to the verification process. The
dynamic approach constructs the reduced state space during the model checking. The
latter’s advantage is that it is not necessary to generate the entire state space, only the
relevant part (that is actually needed in the verification). The abstraction-aware partial
order reduction algorithm integrated into CEGAR presented in this report is inherently a
dynamic approach since it uses on-the-fly information.
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Chapter 3

Related Work

Partial order reduction has been a field of active research since the 1990s to this day
[40, 23, 36, 7, 22, 1]. Algorithms evolved from basic solutions to proven optimal methods
with several further optimizations. In this work, I use an early POR algorithm as a
base since the focus is not on implementing a state-of-the-art algorithm but rather on
developing a novel approach to the combination of partial order reduction (POR) and
counterexample-guided abstraction refinement (CEGAR).

3.1 Traditional Partial Order Reduction (POR) Algorithms

Early partial order reduction methods build on the notion of stubborn [40], ample [7],
persistent, and sleep sets [23]. These sets are associated with states: such states are
subsets of the enabled actions in that state. The reduced state space is generated in a way
that, from a state, only enabled actions in its stubborn/ample/persistent set are explored.
It is proven that if a deadlock is reachable in the original state space, a deadlock can
also be reached in the reduced state space. Therefore, it is sufficient to explore only the
reduced state space.
Sleep sets are particularly useful in stateless model checking [24] where the visited states
are not remembered. A sleep set is also associated to a state. An action α is put in the
sleep set of a state s when we know that α would lead from s to an already explored state.
Actions in the sleep sets are not explored. Sleep sets are orthogonal to persistent sets:
they are used together to achieve more reduction.

3.2 State-of-the-Art POR Algorithms

Traditional POR algorithms approximated the conflicts between actions statically. Later,
a dynamic partial order reduction (DPOR) algorithm was introduced, where the indepen-
dence of actions is decided dynamically during the exploration [22]. DPOR first takes
a (complete) execution, then marks backtrack points along this trace where dependency
is detected. Actions that might lead to other non-equivalent traces are associated to a
backtrack point. These actions have to be explored from the marked state. The algorithm
continues to explore the state space until there is any unprocessed backtrack point.
Source DPOR from [1] is a dynamic partial order reduction algorithm that uses source
sets instead of persistent sets. Each persistent set is a source set, but source sets are
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strictly smaller in some cases. This way, fewer executions are explored with source sets
while reaching an equivalent result to the original problem. The presented source DPOR
algorithm uses sleep sets, too.
Optimal DPOR [1] extends the Source DPOR algorithm with a construct called wakeup
tree, which replaces the backtrack set of actions introduced in DPOR [22]. In simple
DPOR, only single actions are added to backtrack sets. Here, action sequences are as-
sociated with backtrack points: these are wakeup trees. Exploration is only performed
along the associated action sequences from backtrack points. Optimal DPOR is proven
to be optimal: the minimal number of interleavings are explored in every case (that is
no equivalent executions are explored). Since it has been published, Optimal DPOR has
been extended with several enhancements [5, 31].

3.3 Conditional Independence

Initially, the independence relation of actions has been approximated statically by ana-
lyzing the transitions in the model [7, 23]. As a result, two actions that are dependent in
some contexts will be handled as dependent in all possible contexts. However, several POR
algorithms retrieve information from the search context: actions are considered dependent
only in certain states under certain conditions [4, 5, 42].
In [42], a guarded independence relation is introduced where a condition is associated with
each pair of actions meaning that the two actions are independent in any state where
the condition holds. As an example, take two actions α and β where α reads the value
of variable x while β assigns a value to x in the form of x := v. α and β are guarded
independent with respect to x = v, meaning that α and β are independent in any state
where x = v holds (obviously, β does not change x if its value is already v). It could be
said that the abstraction-based POR proposed in this work uses a guarded independence
relation where the condition for two actions using the same variable x is "variable x is
abstracted away in the current abstraction". At the same time, it is computationally
simpler to check during the dependency calculation whether a variable is abstracted away.
So in the algorithm presented in this work, the condition for guarded independence is only
implicitly used.
In [5], an extension of optimal DPOR is presented: optimal DPOR with observers. The
independence of actions is conditional to future actions called observers. For actions α and
β, which both write the shared variable x, γ is an observer if it is a possible future action
that reads the value of x. If there is no observer for α and β (i.e., x is unused later), α and
β can be considered independent. Also, consider the situation where we have n processes
p1, p2, ..., pn, each with the single action x := i (for pi) and a safety requirement on x
after joining all processes. The order of processes before the last one is irrelevant since the
last process will overwrite the value of x anyway. So instead of n! possible interleavings,
it is sufficient to check n (where the last process is different in each trace). Optimal
DPOR with observers achieves further reduction in these scenarios. Again, abstraction-
based POR could be an extension of observers where any read operation on a variable x
that is abstracted away is not an observer of x. Similarly, it would mean a considerable
and redundant computational overhead to realize abstraction-based POR using observers
compared to the method presented in the next chapter.
Context-sensitive DPOR [4] is another extension of optimal DPOR [1], which uses condi-
tional independence, though implicitly. Instead of associating conditions to action pairs,
it checks state equivalence during the state space exploration. Sleep sets are modified so
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that not only can single actions be added to a sleep set, but also sequences of actions to
avoid exploring that sequence. Context-sensitive POR would be capable of recognizing
executions that are equivalent only in the current abstraction because this algorithm is
defined on a more general level. At the same time, it would only realize that two such
executions are equivalent in the "last moment", just before the two traces reach the same
state. The proposed abstraction-based POR algorithm knows it when the two traces di-
verge. Thus, context-sensitive POR has to explore more states to discover the equivalence
of executions.

3.4 POR Combined with CEGAR

Some partial order reduction algorithms, such as sleep set techniques, are primarily useful
in stateless model checking. (Sleep sets aim to avoid exploring the same state several
times: this can be easily achieved in stateful model checking by consulting the list of vis-
ited states.) CEGAR is inherently a stateful model checking paradigm, so these methods
provide less reduction. On the other hand, other POR algorithms are similarly advanta-
geous in stateful as in stateless model checking, such as a persistent set technique where
complete branches of the state space can be ignored.
CPAchecker is an open-source configurable program verification framework that sup-
ports several analysis techniques, including CEGAR and partial order reduction [11].
However, the POR algorithm applied in CPAchecker is relatively simple: only thread-
local operations are considered independent (where an operation is global if it accesses a
global memory location and thread-local otherwise). That is, the application of partial
order reduction is orthogonal to CEGAR in CPAchecker.
In [41], an abstraction-based verification (though the Impact algorithm, not CEGAR) is
combined with a dynamic partial order reduction algorithm. Although they use conditional
dependency, it is similar to the guarded independence relation described in [42], and they
do not exploit information about the applied abstraction to reduce dependency.
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Chapter 4

Partial Order Reduction for
Abstraction-Based Verification

This chapter describes how partial order reduction can be integrated into a CEGAR-
based model checking algorithm. As the reduction of the state space is done during the
verification process, it is a dynamic approach here, even though the used POR algorithm is
more similar to static approaches [23] than the dynamic methods [1, 22] in the literature.
The novelty of the proposed algorithm lies in using extra information about the actual
abstraction used in CEGAR when applying partial order reduction. This information is
only available on-the-fly: that is why the presented algorithm is dynamic. Furthermore,
this abstraction-aware extension of POR is orthogonal to the underlying algorithm: any
dynamic POR method could be used.

4.1 Combining POR with CEGAR

In CEGAR, instead of the concrete state space of a program, an abstract state space is
explored. So, partial order reduction is applied in the abstract state space.

4.1.1 Source Sets

In Section 2.3.3, it has been introduced that partial order reduction techniques work by
calculating sufficient subsets of outgoing transitions to explore for each state. For this
work, I adapt source sets from [1, 2]. Before defining source sets, a few notations are
introduced.
A transition sequence w = t1...tk is an execution from s, if there are states s1, ..., sk and
transitions s

t1−→ s1, si−1
ti−→ si (for 1 < i ≤ k) in the transition system. s

w−→ s′ means that
starting from state s, and taking all the transitions in w, state s′ is reached. Often, actions
are used in notations instead of transitions: an action α used in such a context means a
transition with α as its action. The concatenation of transitions or transition sequences is
denoted by w.t or w.v: for w = w1...wm, v = v1...vn, and transition t, transition sequence
w.t = w1...wmt, and w.v = w1...wmv1...vn.
Transition sequences w1 and w2 are in the same equivalence class (Mazurkiewicz trace) in
a state s, if s′ = s′′ for s

w1−→ s′ and s
w2−→ s′′. This is denoted by w1 ≃s w2.
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If transition sequences w1 and w2 can be completed (by concatenation) to equivalent
sequences from state s, it is denoted by w1 ∼s w2. That is, w1 ∼s w2 if there are
transition sequences v1, v2 such that w1.v1 ≃s w2.v2.

4.1.1.1 Notion of Source Sets

A source set is a subset of enabled actions in a state of a transition system: it is sufficient
to explore this subset in a software verification process [2]. This section introduces the
exact definitions concerning source sets.
Intuitively, a subset P of enabled actions in a state s is a source set if for each execution
w from s there is an action α ∈ P such that the first transition in w that is dependent
with α is a transition with α as its action.

Definition 6 (Weak Initials). Let s be a state, and w be a transition sequence from s.
For w, the set WI s(w) of weak initials in s is a set of actions: α ∈WI s(w) iff α ∼s w. �

Note, that α ∈ enabled(s), since α ∼s w requires that α and w can be executed from s.
The intuitive idea behind weak initials is that in a state s, we can choose an action α for a
sequence w from its weak initials, explore a transition with action α and avoid exploring
w from s. Then, we can still reach the same state from post(s, α) as we would reach from
s by w. This idea is formulated by the following definition of source sets and Theorem 2
in Section 4.1.1.3 from [2].

Definition 7 (Source set). Let s be a state. A set P ⊆ enabled(s) is a source set in s
if for each transition sequence w from s, WI s(w) ∩ P ̸= ∅. �

Example 4. Let us have the example from Figure 4.1, and let s be the initial state. Let
the value of each variable be 0 in s.

For w = αβγδ, WI s(w) = {α, β, δ}. To see this, let us check that each element of WI s(w)
can be extended to an execution equivalent with w. For α, w is a trivial choice: it starts
with α, and it is equivalent with itself. For β, we can choose w′ = βαγδ since w′ ≃s w
(the processes are in the same location after w and w′, and the values of all variables are
the same). As for δ, it can be extended to δαβγ which is equivalent with w.

Now, let us see v = βγαδ: WI s(v) = {β, δ}. α is not a weak initial of v in s, because
we cannot find a suffix v′ for α such that α.v′ ≃s v. After v, the value of variable a is 2.
Starting with α, the value of a is always 0 (the initial value of x), no matter what actions
are executed after α.

As a consequence {α} is not a source set in s, because WI s(v) ∩ {α} = ∅. On the other
hand, {β} or {α, δ} are source sets in s. Unfortunately, to see this using the definition,
we would need to check all executions from s whether there is an equivalent execution for
each of them starting with an element of our source set. In this small example, we could
do that, but in practice, we need a better method to compute source sets.

Thread t1
(α) a = x;

Thread t2
(β) b = 1;
(γ) x = 2;

Thread t3
(δ) c = 1;

Figure 4.1: Small example to illustrate source sets
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4.1.1.2 Computing Source Sets

As we have seen in Example 4, using the definition to calculate source sets means checking
all executions from a state. This is exactly what partial order reduction tries to avoid:
exploring all executions in the state space. So we need a method for computing source sets
that is applicable in practice. The applied algorithm is similar to Overman’s algorithm
[35, 23]. Before presenting the algorithm that calculates source sets, the following notions
are introduced (similar concepts can be found in [2]):

Definition 8 (May-enabled action in a state). An action α is may-enabled in a state
s, if α ∈ enabled(s) or α can become enabled after a sequence of transitions from processes
other than pα. �

Definition 9 (Future actions). future_actions(s, α) is a set of actions: β ∈
future_actions(s, α) iff there is a transition sequence w = w1...wn from s, where wn = β,
and the first action β0 of pβ in w is either α or β0 /∈ enabled(s). �

An action α /∈ enabled(s) can be may-enabled in a state s in two ways:

• The source CFA location of α is the location of pα in s, but α is disabled for some
reason. In practice, this can happen, if α is the next action of pα and α is a join
operation on a process p that has not reached its final location in s (α gets enabled
when p terminates); or α has a guard condition [c] that evaluates to false in s (α
gets enabled when actions from other processes change the values of variables used
by c so that c evaluates to true).

• α is the first action of a process (the source location of α is the initial location of
the CFA of pα) that has not been started as of s (α gets enabled when its process is
created and started by another process).

The condition on β0 in the definition of future_actions implies that β0 is may-enabled in
s. If β is in the same process as α, then β0 = α. Otherwise, β0 is not enabled in s.
We can compute an over-approximation of future_actions(s, α) without exploring the
state space by analyzing the static model of the program. Initially, the actions of the
process pα of α are collected with a graph search of the CFA of pα. Another action
β that is may-enabled in s can be enabled by an action reached in the CFA of pα.
Then, future_actions(s, β) is called recursively to collect more future actions. Algorithm 1
demonstrates the algorithm for computing future_actions.

Algorithm 1: Computing future_actions
Input: s, α
Output: FA /* Set of future actions */

1 pα ← process of α
2 FApα ← reached actions with a graph search of the CFA of pα from α
3 FA← {}
4 foreach may-enabled β in s, β /∈ enabled(s), β may be enabled by a γ ∈ FApα do
5 FA← FA ∪ future_actions(s, β)
6 end
7 FA← FApα ∪ FA

23



On the implementation side, we have the below three cases to check whether the may-
enabled action β can be enabled by a reached action γ. If any of them is true,
future_actions(s, β) is calculated.

• γ starts the process of β.

• γ terminates its own process pγ and β is a join operation on pγ .

• γ writes a variable that β uses in its guard condition.

This computation of future_actions based on the static analysis of the model is an over-
approximation, because each branch of the CFA is searched in line 2, even though some
branches might not be reachable in the state space.
There is a minor nuisance because a process may start another process with the same
CFA. This would result in endless recursion in the presented algorithm. Fortunately, this
problem can easily be eliminated by passing the already reached actions in the recursive
call of future_actions: these actions are excluded from the graph search. For the sake of
conciseness though, I have neglected these details from the description of Algorithm 1.1

With the help of future_actions, we can compute source sets. The enabled actions in the
current state s (EA = enabled(s)) are provided as an input to Algorithm 2 along with the
initial actions (IA) that are initially put in the source set(-to-be) P . As long as any new
action is added to P , the following is repeated: future_actions(s, α) is calculated for each
α ∈ EA \ P . If there is any action β ∈ future_actions(s, α) that is dependent with an
action γ ∈ P , α is added to P .
A source set is computed with Algorithm 2 starting from the enabled actions per process.2
That is, the set of enabled actions of a single process is extended to be a source set with
enabled actions from other processes. This is repeated for each process. One source set
with minimal size is chosen from the calculated source sets and returned as the final source
set of s (this is a simple heuristic for choosing from multiple possible source sets to achieve
the most possible reduction).

1Alternatively, an iterative approach can be used: in fact, an iterative approach has been implemented.
On the other hand, it is easier to present and understand the algorithm in the recursive way.

2Source set calculation could start from a single action, but actions of the same process would be added
to the set anyway: that extra calculation can be spared.

Algorithm 2: Calculating a Source Set from State s

Input: s, EA = enabled(s), IA ⊆ EA /* IA: initially added actions */
Output: P /* Source set containing IA */

1 P ← IA
2 newAdded ← True
3 while newAdded do
4 newAdded ← False
5 toAdd ← {α : α ∈ EA \ P, ∃β ∈ future_actions(s, α), ∃γ ∈ P

such that β and γ are dependent}
6 if toAdd ̸= ∅ then
7 P ← P ∪ toAdd
8 newAdded ← True
9 end

10 end
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Theorem 1. A set P returned by Algorithm 2 for a state s, EA = enabled(s), and
∀IA ⊆ EA is a source set in s. �

Proof. Let us check the definition of source sets, that is, for each execution from s, one of
its weak initials is in P . Let w = w1...wn be a transition sequence from s. We have two
cases:

I. ∃wi ∈ P for some 1 ≤ i ≤ n (that is w contains an action from P )
Let wf ∈ P be the first occurrence of an element of P in w: wj /∈ P for 1 ≤ j < f .
All such wj is independent with wf . To see this, assume the opposite: there is a wd

dependent with wf , and d < f . Since wf is the first action from P in w, wd can be
reached from s with actions from processes that do not have actions in P . That is,
wd ∈ future_actions(s, α) for some α ∈ enabled(s) \ P . In this case, Algorithm 2
would have added α to P based on the condition in line 5 (with wd as β, wf as
γ, and α as α using the notation of the algorithm). This did not happen, so our
indirect supposition is wrong.
Since wf is independent with all actions preceding wf in w, wf .(w \wf ) ≃s w. This
implies that wf ∼s w, which means by definition that wf ∈ WI s(w). So one of the
weak initials of w is in P , indeed.

II. ∄wi ∈ P

This supposition implies that all actions in w are independent with all actions in
P . Assume the opposite: there is a wd for some 1 ≤ d ≤ n, and γ ∈ P such
that wd and γ are dependent. Reasoning is similar to case I. Since ∄wi ∈ P , wd ∈
future_actions(s, α) for some α ∈ enabled(s) \ P . Algorithm 2 would have added α
to P based on the condition in line 5, which did not happen.
Since all actions in w are independent with all actions in P , any α ∈ P is a weak
initial of w: α.w ≃s w.α, which implies that α ∼s w. This means by definition that
α ∈WI s(w), indeed. So one of the weak initials of w is in P , again. □

Now, we have an algorithm that calculates source sets. The next section explains how
source sets can be used for partial order reduction.

4.1.1.3 Source Set Selective Search in CEGAR

In CEGAR, the abstract state space is built by the abstractor in an expand operation. Let
S denote the states of the abstract state space and SE ⊆ S the set of expanded states. A
not-yet-expanded state s ∈ S \ SE is chosen based on a search strategy (e.g., BFS, DFS,
or A* with some sophisticated heuristics) and the selected state s is expanded. That is,
the enabled actions in s are collected, and their targets (if not already in S) are added
to the abstract state space as new states, and a new transition is added for each enabled
action from s to the new state.3

The above way, the abstract state space is fully discovered. That is what POR is about
to prevent. The POR algorithm applied here filters the enabled actions and only expands
the abstract state space with the filtered subset of enabled actions and their successor

3The construction of the abstract state space (the Abstract Reachality Graph or ARG exactly) is slightly
more complex in CEGAR. States can cover each other, and it is unnecessary to expand covered states.
Nevertheless, covering does not influence POR since POR works in the expand operation. See [21] for more
details about covering.
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states. This filtered subset is a source set in each state.4 The abstraction used in CEGAR
preserves the CFA locations and actions in the abstract state space, only the values of
variables can be abstracted away. Thus, source sets can be directly calculated using the
actions of the program (the CFA).
Theorem 2 in [2] proves that if we generate a reduced state space by exploring only source
sets of enabled actions in each state, for all executions in the original state space, there
will be an equivalent one in the reduced state space. By default, source set selective search
works for acyclic state spaces. However, with a minor supplement, cycles can be handled
as well. Theorem 2 from [2] is the following (the theorem is proven in [2]).

Theorem 2. Let S be the original state space, and SR be the reduced state space obtained
from S by restricting the set of actions that are explored from each state. If the following
two conditions are satisfied:

1. for each state s in SR, the set of explored actions is a source set in s,

2. for each cycle in SR, if an action α is enabled in all states of the cycle, then α must
be explored from some state of the cycle,

then for each state s in SR and execution w from s in S, there is an execution w′ in SR

such that w.v ≃s w′ for some transition sequence v. �

Note that states reachable from an error state are error states (if we reach an error location
in a process p, we may execute further operations on other processes, p remains in the
error location since there are no available operations from an error location). So if w leads
to an error state, w.v ends in an error state as well. This way, Theorem 2 states that if an
error state can be reached in the original state space, an error state (potentially another
one) is also reachable in the reduced state space discovered with a source set selective
search. Thus, reachability analysis performed in the reduced and the original abstract
state space yields equivalent results.
To satisfy the second condition concerning cycles, we have to detect cycles in the state
space. Cycles can be detected by performing a depth-first search from the initial state.
With DFS, edges of a graph are classified into tree, forward, back and cross edges. Each
cycle contains a back edge. If a back transition starting from state s is encountered in the
state space, all enabled actions are explored from s. This guarantees the second condition
of Theorem 2: any action that is enabled in all states of a cycle is explored from some
state of the cycle.
Back transitions could be detected during the exploration of the state space, on-the-fly.
However, it would require a depth-first search of the state space (a similar approach
can be found in [23]). To leave the possibility for other search strategies (e.g., BFS),
back transitions can be calculated differently. A sufficient method to decide whether a
transition t = (s, α, s′) is a back transition is the following: if the program operation of α
is represented by a back edge in the CFA of the process, t is considered a back transition.
Note that states are partly characterized by CFA locations: without a back CFA edge, we
could never "get back" to a previously visited state. Furthermore, back edges of the CFA
can be calculated once at the beginning of the whole model checking process.

4It turns out that the filtered subset of enabled actions is not necessarily a source set in an abstract
state. The proof of the soundness of the presented algorithm in Section 4.1.2 will explain this in more
detail.
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4.1.2 Soundness of the combination of POR and CEGAR

In this section, the soundness of using partial order reduction with CEGAR in the pre-
sented way is proven. To prove the correctness of the combination of CEGAR and POR,
we have to check that if an error state is reachable in the concrete state space of the pro-
gram, an abstract error state is reachable in the POR-reduced abstract state space. That
is, we have to prove that the composition of the POR and the CEGAR transformation is
error-preserving.
We do not have to handle the case where no error state can be reached in the concrete
state space. In this case, the abstract state space can contain an abstract error state, and
the abstractor of CEGAR may find a spurious counterexample in the abstract state space.
However, the refiner checks the counterexamples and refines the abstraction if necessary.
That is, CEGAR cannot produce a false positive (return an unsafe verdict when the
program is safe). The algorithm may not terminate, but we have seen in Section 2.2.1
that the model checking problem is undecidable as a mathematical problem.

Theorem 3. Let the abstract state space SA be the result of an abstraction applied in
CEGAR on the concrete state space S. Let the reduced abstract state space SAR be
obtained from the original abstract state space SA by only exploring actions returned by
Algorithm 2 from each abstract state (all enabled actions are explored when one of them
appears on a back transition).
If an error state is reachable from the initial state of the concrete state space S, an abstract
error state can be reached in the reduced abstract state space SAR. �

Proof. Technically, the concrete state space is mapped to the abstract state space, then
to the reduced state space with POR (1). For the sake of the proof, let us consider the
composition of the two transformations in a reversed order (2). That is:

POR ◦ abstraction : S
abstraction−−−−−−−→ SA

P OR−−−→ SAR (1)
abstraction ◦ POR : S

P OR−−−→ SR
abstraction−−−−−−−→ SRA (2)

The proof proceeds by checking that S
P OR−−−→ SR and SR

abstraction−−−−−−−→ SRA are error-
preserving transformations; it is also shown that SRA ⊆ SAR. This proves that if an
error state is reachable in S, then an abstract error state is reachable in SAR (which is the
statement of the theorem).

Let f be the abstraction function of the abstraction S
abstraction−−−−−−−→ SA. Let Pf(s) denote

the set of actions to explore returned by Algorithm 2 for the abstract state f(s).

Let us perform the S
P OR−−−→ SR (theoretical) state space reduction so that the explored

actions from a concrete state s is Ps = Pf(s) ∩ enabled(s).
To see that Ps is a source set in s, note that enabled(s) ⊆ enabled(f(s)) since by definition
of the abstract state space, if a transition (s, α, s′) is in the concrete state space, the
transition (f(s), α, f(s′)) is in the abstract state space. Now, call Algorithm 2 with Ps as
the initial actions input of the algorithm (the other two inputs are s and enabled(s)). The
dependency relation used by the algorithm is a valid dependency relation in S. Therefore,
based on Theorem 1, the returned set P ′

s is a source set in s. Let us assume that P ′
s ̸= Ps,

i.e., the algorithm has added at least one action α ∈ enabled(s)\Ps. But α ∈ enabled(f(s))
as well, and Ps ⊆ Pf(s), so Algorithm 2 would have had to add α to Pf(s) when we used the
algorithm to calculate Pf(s): since future_actions(s, α) ⊆ future_actions(f(s), α), if α is
selected in line 5 of Algorithm 2 during the calculation of P ′

s, α is also selected during the
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calculation of Pf(s). This is contradiction because α has not been added to Pf(s). Thus,
P ′

s = Ps, which implies that Ps is a source set for any state s ∈ S, indeed.
So the explored actions in SR form source sets in each state of SR: we can obtain SR from
S with a source set selective search. The correctness of a source set selective search is
proven in [2], so S

P OR−−−→ SR is an error-preserving transformation.

Let us perform the transformation SR
abstraction−−−−−−−→ SRA with the same abstraction function

f . Abstraction is error-preserving: if there is an error state e ∈ SR, then its abstract state
f(e) ∈ SRA is an abstract error state by definition.
Now, let us see that SRA ⊆ SAR, that is any state or transition present in SRA is present
in SAR (in other words, if a state s is reachable in SRA from its initial state, s is reachable
in SAR from its initial state). Let s0 be the initial state of S. Then s0 ∈ SR, f(s0) ∈ SRA,
f(s0) ∈ SA and f(s0) ∈ SAR. If a state s′ is reachable in SRA, there is a state s ∈ SR so
that f(s) = s′ and s is reachable in SR. Since Ps ⊆ Pf(s) for any state s ∈ SR, if a state s
is reachable in SR, f(s) is reachable in SAR. We got that if a state s′ is reachable in SRA,
s′ is also reachable in SAR, so SRA ⊆ SAR holds indeed.
Let E(SP) denote the set of error states reachable in a state space SP from its initial
state. The statement of the theorem is the following: ∃e ∈ E(S) =⇒ ∃e′ ∈ E(SAR).

S
P OR−−−→ SR being an error-preserving transformation means ∃e ∈ E(S) =⇒ ∃e′ ∈ E(SR).

The abstraction function maps e′ to the abstract state f(e′) ∈ SRA which is an error state
in SRA (by definition of abstract error states): f(e′) ∈ E(SRA). Based on SRA ⊆ SAR,
f(e′) ∈ E(SAR) which proves the theorem. □

Note that the proof does not assume that the used dependency relation of actions is valid in
the abstract state space SA. For certain concrete types of abstraction (e.g., explicit-value
abstraction), it could be easily proven that the dependency relation is valid in the abstract
state space. Then, we would not need the reversed order of transformations (abstraction◦
POR) for the proof because we could simply say that SAR is obtained from SA with a
source set selective search which is proven to be error-preserving. However, without any
assumption on the abstraction function, the dependency relation is not necessarily valid in
SA, and SAR is not necessarily the result of a source set selective search of SA. This way,
the proof shows that the above combination of CEGAR and POR is correct independent
of the type of the used abstraction.

4.2 Abstraction-Aware Partial Order Reduction

The previous sections of this chapter introduced the combination of a traditional partial
order reduction algorithm with a CEGAR-based model checking algorithm. However,
this integration is rather loose so far: the point has been identified in CEGAR (i.e., the
expansion of the abstract state space) where POR can be applied, but the two algorithms
have "no further contact".
In this section, a novel approach of integrating POR with CEGAR is presented where
POR uses extra information from the current state of the CEGAR algorithm. I refer to
this approach as abstraction-aware partial order reduction (AAPOR).
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4.2.1 Basic Concept and Motivation

In Section 2.2.2, two common forms of abstraction has been introduced: explicit-value
abstraction and predicate abstraction. The information describing an abstraction is called
precision. In case of explicit-value abstraction, the precision is the set of tracked variables.
The precision of predicate abstraction is the set of tracked predicates.
Let us use the term abstract variable for an element of the precision. In explicit-value
abstraction, a tracked variable is an abstract variable, while in predicate abstraction, a
predicate is an abstract variable. The notation χ ∈ Π is used to denote that abstract
variable χ is present in precision Π (χ is one of the tracked variables in explicit-value
abstraction or χ is a tracked predicate in predicate abstraction). Let orig(χ) denote
the set of concrete (original) variables that appear in χ (in explicit-value abstraction,
orig(x) = {x} if x is a tracked variable; for a predicate y > z, orig(y > z) = {y, z}).
This information, the precision can be used to boost partial order reduction. If a vari-
able x is not present in the current precision, it is unnecessary to consider two actions
dependent just because they both use x (if there is no other global variable that they
both access) since the value of x is ignored in the current abstraction. With explicit-value
abstraction, it is enough to take the tracked variables into consideration when calculating
dependency between actions. Similarly, when using predicate abstraction, two actions are
only dependent if there is a predicate that has variables from both actions.

Example 5. Let us have two processes. Let the model checking reach a state s where the
only enabled actions are α{x = 2 · z} and β{y = x− 1} from different processes.

a. If we calculate a source set in this state in the traditional way, we need to include
both α and β in our set because they both use the object x, so they are dependent
regardless of the applied abstraction.

b. Let us assume, that we use explicit-value abstraction and the set of tracked variables
is currently Π = {y, z}. Since ∄ χ ∈ Π such that x ∈ orig(χ) (x is not in the
precision) and x is the only object that both α and β accesses, we can consider α
and β independent in the current abstraction.

c. Now, let us use predicate abstraction and let the set of tracked predicates be Π =
{y > 2, x+z = 0}. As x ∈ orig(x+z = 0) (there is a predicate about x in Π), α and
β is considered dependent in this abstraction even with the proposed method. They
are also dependent if Π = {y > z} since y, z ∈ orig(y > z), that is the predicate
y > z uses variables from both α and β. However, the two actions are independent
with precision Π = {y > 0, z = 2}.

The motivation for developing this abstraction-aware POR algorithm is to make fewer
actions dependent. By decreasing the dependency in the model, the reducing effect of
partial order reduction hopefully increases resulting in better performance.
The introduced concepts are illustrated in a small case study on a complete multi-threaded
program with figures about the abstract state spaces in Section 6.1.

4.2.2 Description of the Algorithm

First, a simple version of the algorithm is described, then an extension is explained that
makes the proposed algorithm compatible with lazy state space computation [28]. Finally,
the correctness of the presented methods is proven in this section.
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4.2.2.1 Simple Version

When using a basic version of CEGAR, the abstraction-aware POR algorithm is quite
simple. However, some lazy computation can improve CEGAR, which requires further
steps to preserve the correctness of AAPOR. This will be explained in detail later in this
section. Let us start with the simple version.
The criterion for applying the simple version of AAPOR is to start building the abstract
state space from scratch in every iteration of CEGAR. In this case, only the calculation
of dependency is different compared to Algorithm 2 presented in Section 4.1. Algorithm 3
is the modified algorithm with differences highlighted.
The algorithm receives the precision Π of the current abstraction as an input. Depen-
dency is calculated in Line 5 with respect to precision Π, which can be formalized as
a modification of the sufficient conditions for the independence of actions introduced in
Section 2.3.1:

Lemma 1. It is sufficient to determine whether two actions α and β are independent
in a state s with precision Π by the following conditions. Actions α, β ∈ enabled(s) are
independent in s with respect to Π if:

• α and β are not the actions of the same process, and

• there is no abstract variable in the precision in which an object accessed by α and
an object accessed by β both appear. �

To clarify the grammatically complex wording of the lemma, the following mathematical
notation and formula can be used to describe the second condition. Let Xα and Xβ be
the set of objects accessed by actions α and β. The condition says that ∄ χ ∈ Π such that
orig(χ) ∩Xα ̸= ∅ ∧ orig(χ) ∩Xβ ̸= ∅. Lemma 1 will be proven later in Section 4.2.3.1.
Note that the output of Algorithm 3 is only guaranteed to be a valid source set in the
current abstraction. In the basic version of POR where the abstraction is not taken into
consideration, if the same actions are enabled in a state, any calculated source set is also
a source set in any other abstraction. Now, this is not the case. For this, consider the
following example.

Algorithm 3: Calculating a Source Set in an Abstraction
Input: s, EA, IA ⊆ EA, Π /* Π: precision of the abstraction */
Output: P /* Source set in this abstraction */

1 P ← IA
2 newAdded ← True
3 while newAdded do
4 newAdded ← False
5 toAdd ← {α : α ∈ EA \ P, ∃β ∈ future_actions(s, α), ∃γ ∈ P

such that β and γ are dependent with respect to Π}
6 if toAdd ̸= ∅ then
7 P ← P ∪ toAdd
8 newAdded ← True
9 end

10 end
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Example 6. Let us take case b of Example 5. {α} is a source set in s in the abstraction
with precision {y, z} since α and β are independent in this abstraction.

Let us assume that in the next refinement step, x is added to the set of tracked variables:
the precision becomes {x, y, z}. {α} is not a source set anymore in s with this new precision
since α and β are dependent now.

In the simple version of AAPOR where the abstract state space is reexplored from the
initial state, this limitation of the validity of a source set does not matter. However, the
consequences must be handled in the setting of the next section.

4.2.2.2 Compatibility with Lazy Pruning

The simple version of AAPOR required to build the abstract state space from the ground
up. However, CEGAR can be optimized to use parts of the abstract state space built in
the previous iteration. The refiner prunes the abstract state space so that the spurious
counterexample found in the previous iteration can never be found again. At the same
time, it keeps the other part of the abstract state space that cannot be blamed for finding
the spurious counterexample. This is called lazy pruning [28].
If AAPOR is naively used together with lazy pruning, the result may be incorrect. Con-
sider a situation where the abstract state space is reduced with AAPOR with a precision
Π. Let s be a state with a calculated source set P which is a valid source set with Π.
The abstractor finds a counterexample which turns out to be spurious. The refiner lazily
prunes the abstract state space. Let s not be in the pruned part: it is kept in the abstract
state space for the next iteration. Let the precision change so that P is not a valid source
set anymore. When the abstractor expands the state space in the next iteration, it does
not deal with the preserved part of the state space and explores only from the state(s)
where the state space has been pruned. Unfortunately, this is not a source set selective
search now, since the explored actions from s, P is not a source set in the new abstraction.
That means, the correctness of the algorithm is no longer guaranteed.
In order to preserve that the exploration of the state space is a source set selective search,
exploration has to start again from states where the previously calculated source set is
not a source set anymore. For this, the source set calculation must be extended: a set of
variables is returned along with a source set with the semantics that the returned set of
actions is only a source set until none of the returned variables appears in the precision.
This way, when a new variable is entered into the precision, the abstractor will know
which states to recompute. Fortunately, previous exploration from such a state s can be
preserved, only some new set of actions must be explored in addition which complete the
no-more-source set to a source set (technically this means that the set of actions already
explored from s are given to Algorithm 4 as the initial actions input parameter).
More formally, Algorithm 4 (the modified version of Algorithm 3) is used to calculate
source sets. It returns the tuple {P, X} for a state s and a precision Π, where P is a
source set in s until ∀ χ ∈ Π′, X ∩orig(χ) = ∅ for the precision Π′ of any later abstraction.
X is called the validity set of P . In lines 7-9, for each action α that is not yet in P (and
will not be added in that iteration), variables are collected whose presence in the precision
would mean that α has to be added to P . At the end of the procedure, X is calculated
as the union of variables associated with actions not in the source set. Let Ps,i and Xs,i

denote the sets P and X calculated for state s in iteration i of CEGAR.
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Algorithm 4: Calculating a Source Set in an Abstraction with Lazy Pruning
Input: s, EA, IA ⊆ EA, Π
Output: P , X /* P is a source set until X ∩Π′ = ∅ */

1 P ← IA
2 newAdded ← True
3 ignored← {} /* Empty hash map */
4 while newAdded do
5 newAdded ← False
6 toAdd ← {α : α ∈ EA \ P, ∃β ∈ future_actions(s, α), ∃γ ∈ P

such that β and γ are dependent with respect to Π}
7 foreach α in EA \ (P ∪ toAdd) do
8 ignored[α]← ignored[α] ∪ {x : ∃β ∈ future_actions(s, α), ∃γ ∈ P

such that β and γ are dependent with respect to Π ∪ {x}}
9 end

10 if toAdd ̸= ∅ then
11 P ← P ∪ toAdd
12 newAdded ← True
13 end
14 end
15 X ←

⋃
α∈ignored, α/∈P ignored[α]

Algorithm 5: Process Preserved States after Lazy Pruning
Input: Spreserved, Π

1 foreach s in Spreserved do
2 if ∃ χ ∈ Πi such that Xs,i−1 ∩ orig(χ) ̸= ∅ then
3 (Ps,i, Xs,i)← call Algorithm 4(s, enabled(s), Ps,i−1, Π)
4 explore each α ∈ Ps,i \ Ps,i−1 from s

5 else
6 (Ps,i, Xs,i)← (Ps,i−1, Xs,i−1)
7 end
8 end

In the refinement step of CEGAR, part of the abstract state space from iteration i − 1
is preserved according to a lazy pruning technique. Let the preserved states be S′ and
the refined precision of iteration i be Πi. The handling of preserved states is shown in
Algorithm 5 with the following explanation: from all state s ∈ S′ where ∃ χ ∈ Πi such
that Xs,i−1 ∩ orig(χ) ̸= ∅, exploration restarts. Algorithm 4 gets Ps,i−1 as the "initial
actions" input for such a state. For a state s′ ∈ S′ where ∀ χ ∈ Πi, Xs,i−1 ∩ orig(χ) = ∅,
exploration does not restart from s′.

4.2.3 Correctness of the Presented Methods

In this section, it is proven that the presented algorithms preserve the correctness of model
checking, that is the new algorithms yield an equivalent result with the original problem.
First, the soundness of the simple version, and then the correctness of the lazy pruning
compatible version is proven.
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4.2.3.1 Correctness of the Simple Version

The correctness of the simple AAPOR algorithm can be formalized with the following
theorem:

Theorem 4. Let the exploration of the abstract state space start from the abstract initial
state in every iteration of CEGAR. Let s be a state in the abstract state space reached
during the exploration and let the set of explored actions from s be calculated with Algo-
rithm 3. The state space exploration is a source set selective search in every iteration of
CEGAR. �

The correctness of a source set selective search is already proven as explained in Section 4.1.
So if Theorem 4 holds, the simple version of AAPOR is sound. To prove Theorem 4, we
prove Lemma 1, then we conclude the theorem with a few more steps. First, let us recall
Lemma 1:

Lemma 1. It is sufficient to determine whether two actions α and β are independent
in a state s with precision Π by the following conditions. Actions α, β ∈ enabled(s) are
independent in s with respect to Π if:

• α and β are not the actions of the same process, and

• there is no abstract variable in the precision in which an object accessed by α and
an object accessed by β both appear. �

In the proof of the lemma, it is shown that the new conditions given in this lemma for
the independence of two actions are sufficient indeed in the abstract state space built with
the same precision. Since we are dealing with an over-approximation of the dependency
relation, where we can safely say that two actions are dependent (even if they are inde-
pendent in reality), we only have to check the cases where two actions are independent
based on the new conditions.

Proof (Proof of Lemma 1). Let α, β ∈ enabled(s), pα and pβ be the process of α and β,
and Π be the current precision. Let Xα and Xβ be the set of objects accessed by α and β
respectively.
If pα = pβ, they are dependent owing to the first condition. Again, if ∃ χ ∈ Π, such that
Xα ∩ orig(χ) ̸= ∅ and Xβ ∩ orig(χ) ̸= ∅, α and β are dependent based on the second
condition of the lemma.
So let us check the definition of independent actions (Definition 4) in the remaining case
where pα ̸= pβ and ∄ χ ∈ Π, such that Xα ∩ orig(χ) ̸= ∅ and Xβ ∩ orig(χ) ̸= ∅. Here,
the conditions of the lemma tell us that α and β are independent. The two criteria in the
definition of independence:

• β ∈ enabled(post(s, α)) and α ∈ enabled(post(s, β))
Indirectly, let us assume that β /∈ enabled(post(s, α)), that is, β is disabled by
α (the case is symmetric for α and β). Since process pβ is at the same location
in s and post(s, α) (as pα ̸= pβ), β can only be disabled if its guard condition
evaluates to false in post(s, α). As the guard condition of β is true in s (because
β ∈ enabled(s)), the evaluation of the guard expression of β is different in s and
post(s, α). Consequently, some abstract information (an abstract variable) about
variables used by β is changed by α.

33



The previous statement says that α changes the value of an abstract variable χ (so
Xα∩orig(χ) ̸= ∅), and the guard condition of β depends on χ (so Xβ∩orig(χ) ̸= ∅).
This contradicts our supposition that ∄χ ∈ Π such that Xα ∩ orig(χ) ̸= ∅ and
Xβ ∩ orig(χ) ̸= ∅.

• post(post(s, α), β) = post(post(s, β), α)
Let s = (lpα , lpβ

, ..., dα,1, ..., dα,n, dβ,1, ..., dβ,m, ...) where lpα and lpβ
are the location

of pα and pβ in s; dα,i and dβ,j are the values of the abstract variables related
to α and β respectively (these abstract variables are disjoint indeed based on our
supposition)5.
Executing α changes lpα and may change the values dα,1, ..., dα,n but leaves the
locations lpi (for all other processes pi ̸= pα) and the values of other abstract variables
(other than dα,j) as they are. The same is true for β, analogically. So:
post(s, α) = (l′pα

, lpβ
, ..., d′

α,1, ..., d′
α,n, dβ,1, ..., dβ,m, ...)

post(s, β) = (lpα , l′pβ
, ..., dα,1, ..., dα,n, d′

β,1, ..., d′
β,m, ...)

Since β only uses the abstract variable values dβ,1, ..., dβ,m (and obviously only the
location of pβ matters for β), as far as β is concerned, s and post(s, α) is equivalent.
So taking β from s or post(s, α) will lead to the same location l′pβ

and will set the
same new values d′

β,1, ..., d′
β,m for the related abstract variables. Again, the same is

true for α, analogically. Thus:
post(post(s, α), β) = post(post(s, β), α) = (l′pα

, l′pβ
, ..., d′

α,1, ..., d′
α,n, d′

β,1, ..., d′
β,m, ...)

Both criteria in the original definition of independence is met so α and β are indeed
independent in the supposed case. □

With Lemma 1, the proof of Theorem 4 is immediate:

Proof (Proof of Theorem 4). The abstract state space is built all over again from the initial
state in every iteration of CEGAR. Let us take one iteration. The actions to explore are
calculated with Algorithm 3 from every state. The way Algorithm 3 calculates dependency
between actions is a sufficient over-approximation of the dependency relation of actions
based on Lemma 1. As a consequence, the correctness of Algorithm 3 is equivalent with
Algorithm 2 whose correctness is explained in Section 4.1.1.2. Thus, the set of returned
actions is a source set in that particular state and remain a source set throughout this
iteration since the abstraction does not change during an iteration. That is, a source set
selective search is performed in every iteration. □

4.2.3.2 Correctness of the Integration with Lazy Pruning

The following theorem proves the correctness of the extended AAPOR algorithm which
can be used when the abstract state space is pruned lazily:

Theorem 5. Let s be a state in the abstract state space and Π be the current precision.
If s has not been explored before, let the set of explored actions from s and an associated
set of variables be calculated with Algorithm 4. If s has been explored previously, let s
be processed again with Algorithm 5. The state space exploration performed this way is
a source set selective search in every iteration of CEGAR. �

5The first "..." stands for the locations of other processes and the last "..." signifies the values of other
abstract variables that are neither related to α nor β.
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Proof. First, observe that Algorithm 4 and Algorithm 3 calculates source sets exactly the
same way (the modifications in Algorithm 4 does not affect the returned set P ). Thus, the
returned set P by Algorithm 4 is a source set in the iteration when it has been calculated
as we have seen it for Algorithm 3 in the proof of Theorem 4.
Now, let us take an iteration i of CEGAR with a set of preserved states Spreserved from
the previous iteration i − 1 (for i = 0, Spreserved = ∅) and let Π be the precision of the
applied abstraction in iteration i. We show that the set of explored actions is a source set
in every state at the end of iteration i. We have the following two cases for a state s:

1. s ∈ Spreserved: s is reprocessed with Algorithm 5.
If ∃χ ∈ Π such that Xs,i−1 ∩ orig(χ) ̸= ∅, the set of actions to explore Ps,i is
recalculated with Algorithm 4 and the actions in Ps,i that has not been explored
previously are explored from s. So the set of explored actions from s at the end of
this iteration is Ps,i which is a source set in this abstraction based on our observation
at the beginning of this proof.
If ∄χ ∈ Π such that Xs,i−1 ∩ orig(χ) ̸= ∅, Ps,i−1 is still a source set in s in this
abstraction based on Lemma 1.

2. s /∈ Spreserved: the set of actions to explore Ps,i is calculated with Algorithm 4 and
all actions in Ps,i are explored from s. So the set of explored actions from s at the
end of the iteration is Ps,i which is a source set in this abstraction based on our
observation at the beginning of this proof.

We have seen that the set of explored actions is a source set for each state in the abstract
state space at the end of any iteration. So a source set selective search is performed in
every iteration of CEGAR. □

4.3 Implementation

I implemented the presented abstraction-aware partial order reduction algorithm into the
open-source CEGAR-centric model checking framework Theta [38, 28, 3]. The verifica-
tion tool is developed by the Fault Tolerant Systems Research Group (FTSRG) at the
Department of Measurement and Information Systems (MIT) of our university.6

The practical output of my work is a contribution to this open-source project in the
form of a GitHub pull request7 and parts of the code on a development branch8. With
my contribution, Theta is capable of verifying considerably more concurrent programs
(see details in the evaluation chapter, in Section 6.2). Just as in previous years, Theta
will participate in SV-COMP [10] later this year. SV-COMP is a software verification
competition where verification tools have to verify programs as fast as they can. Hopefully,
with the contributed algorithms, Theta will be able to solve much more tasks in the
concurrency safety category of the competition, thus ranking much better than in previous
years.

6https://ftsrg.mit.bme.hu
7The pull request is available at: https://github.com/ftsrg/theta/pull/177
8The branch is available at: https://github.com/ftsrg/theta/tree/xcfa-refactor
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4.3.1 Theta

Theta is a configurable model checking framework which supports several formalisms
including C programs as an input model [38, 28, 9]. The core of its model checking
algorithm is CEGAR. Theta is designed to perform reachability analysis in a state space
(for possibly different interpretations of error states).
The framework has been created with configurability in mind: different abstraction do-
mains and refinement strategies are implemented to compare their performance. Theta
can be easily extended to support the verification of new formalisms by implementing a
new front-end that can interpret the desired models.

4.3.2 Implementation of Abstraction-Aware POR

Partial order reduction has a role when building the abstract state space, so POR has
been implemented in the abstractor component of Theta. More specifically, when the
abstract state space is expanded, the enabled actions are collected. There is an interface
LTS (standing for labelled transition system) which has a method that can return the
enabled actions for a state and a precision. The original implementation of this interface
simply returns all enabled actions.
I added two new implementations: one that works according to the traditional POR
algorithm (this version does not use the precision for calculating dependency) and another
that realizes abstraction-aware POR.
The compatibility with lazy pruning mainly required additions in the refiner component.
At the end of the refinement step, each state is marked whose source set is not a source
set in the new abstraction. The abstractor is extended so that already explored actions
are not processed again in such states.
The implementation of the new algorithms preserve the configurability of Theta: I used
dependency injection to add the new algorithms in a manner that can be easily configured,
changed or extended.

4.3.3 An Optimization - Large-Block Encoding

Exploring a transition in the state space means that an SMT problem has to be solved
[28]. It is a costly operation, so we try to minimize necessary exploration during the
verification. That is what partial order reduction does. On the other hand, other methods
can also reduce the number of transitions in the state space.
Large-block encoding (LBE) achieves this by grouping several actions on the same transi-
tion [16]. This way, more complex but less SMT problems have to be solved. Benchmark
results in [16] and in Section 6.2 show that this trade-off is well worth it. Actions can be
grouped on the same transition based on various methods.
I apply a simple version of LBE, where action groups are formed in a way that any
consecutive thread-local operations and operations of atomic blocks are appended after a
global operation. (By global operations, I mean operations that use global variables; the
rest are thread-local operations.) The semantics of these action groups (lists) are that the
actions in it are performed sequentially. Let us illustrate how the implemented version of
LBE works on a small example.
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void func() {
ATOMIC_BEGIN();
x = 1;
y = 2;
ATOMIC_END();
int a = 0;
if(x > y) {

a -= x;
a--;

} else {
a += y;
a++;

}
x = a;

}

(a) Source code

Atomic Begin

x = 1

y = 2

 Atomic End

[ x > y ]  [ x ≤ y ]

a = a - x a = a + y

a = a - 1 a = a + 1

x = a

a = 0

(b) Single-block encoding

Atomic Begin,

x = 1,

y = 2,

Atomic End,

a = 0

[ x > y ] [ x ≤ y ]

a = a - x,
a = a - 1

a = a + y

a = a + 1

x = a

(c) Large-block encoding

Figure 4.2: Small example to illustrate the presented algorithms

Example 7. Let us have the C function from Figure 4.2a (the function does not perform
any meaningful task). ATOMIC_BEGIN() and ATOMIC_END() mark the beginning and the
end of an atomic block, respectively. x and y are global variables, while a is local.

Figure 4.2b is the CFA of the program without LBE (that is, it uses SBE, single-block
encoding). Figure 4.2c shows the CFA where LBE is applied. The operations on the first
edge were grouped together because the first four operations form an atomic block and a =
0 is a thread-local operation. Then, in the two branches, the first operation is global since
they use x or y, and the second is thread-local, so they can be represented by a single edge.
The condition check and the last operation are global operations without any thread-local
operations after them, thus, they remain alone.

This version of LBE works well with partial order reduction. By having at most one global
operation per edge, new dependency does not arise. If we group an operation using x and
an operation using y on a single transition, it would be dependent with any action that
uses any of x and y. So the applied LBE does not counteract partial order reduction.
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Chapter 5

Data Race Detection

Data races occur in a concurrent program, when multiple processes or threads access the
same shared memory location simultaneously [34]. Since data races lead to undefined
behavior, we would like to avoid them most of the time. It can lead to situations where
the memory contains a value that was not intended to be written by any operations
(see Example 8). In safety-critical systems, such errors are naturally intolerable. As a
consequence, the formal verification of the concurrent software of such a system extends
to data race detection.
Partial order reduction can be used similarly for data race detection as for error location
reachability analysis. However, the formal requirement is different from what we have seen
so far in this work, therefore some modifications are inevitable. This chapter introduces
data races and the way partial order reduction can be used to improve the performance
of data race detection. The soundness of detecting data races this way is proven as well.
Evaluation of partial order reduction for data race detection can be found in the next
chapter of evaluation.

5.1 Data Races

The definition of data races are taken from the C standard (ISO/IEC 9899:201x §5.1.2.4
paragraph 25) [29]:

Definition 10 (Data Race). The execution of a program contains a data race if it con-
tains two conflicting actions in different threads, at least one of which is not atomic, and
neither happens before the other. Any such data race results in undefined behavior. �

Based on the standard, two actions conflict if one of them modifies a memory location and
the other one reads or modifies the same memory location. This is one of the sufficient
conditions of dependency introduced in Section 2.3.1.1 Two actions that cause a data race
are referred to as racing actions.
From the perspective of model checking, "neither happens before the other" means that
there is a state in the state space where the two racing actions are both enabled.
Consider the following example for data races.

1The sufficient conditions for dependency introduced in Section 2.3.1 does not distinguish read and
write operations, but it could be extended with this condition without any consequences. This condition
is only ignored there to follow the implementation.
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Initially: int x = 0;

Thread t1

(α) x = 1;

Thread t2

ATOMIC_BEGIN;
(β) x = 512;

ATOMIC_END;

Thread t3

ATOMIC_BEGIN;
(γ) x = 2;

ATOMIC_END;

Figure 5.1: Small example to illustrate data races

Example 8. Let us have the threads from Figure 5.1.

The execution α.β contains a data race because α and β are racing actions: α and β write
the same variable x, one of them is not an atomic operation (note that the assignment of
an int is not atomic), and neither happens before the other (α and β are both enabled in
the initial state: β.α is also a possible execution).

Let x be a 4-byte int. Imagine the situation where the first three bytes are written to x by
α, then β writes all bytes of its value into x, finally α finishes with its last byte. The value
of x will be 513 which was not intended by either process.

On the other hand, the execution β.γ does not contain a data race since both β and γ are
atomic operations (even though they access the same variable).

5.2 Partial Order Reduction for Data Race Detection

For verifying that a program contains no data race, the formal requirement is the following:
there is no state in the state space where two conflicting (dependent) actions from different
threads are enabled and one of them is not atomic. In this formulation, it is assumed
without the loss of generality that operations of an atomic block appear as a single action.
On the one hand, this can be achieved by using a version of large-block encoding that
groups operations of an atomic block on a single edge. On the other hand, when calculating
dependency, all variable accesses can be collected in the atomic block (with a simple graph
search until the end of the atomic block is reached).
So now, an error state is a state where two racing actions are enabled. We can use a
source set selective search to check the existence of such error states. Recall Theorem 2:
it states that if we build a reduced state space SR with a source set selective search of the
original state space S, then for each state s in SR and execution w from s in S, there is an
execution w′ in SR such that w.v ≃s w′ for some transition sequence v. Note that in error
location reachability analysis, only error states are reachable from an error state due to
the fact that error locations are deadlocks (locations without outgoing edges) in the CFA:
if w ends in an error state, then w.v as well. However, non-error states may be reachable
from an error state, now. This difference makes the proof of the correctness of using POR
for data race detection slightly more complex.
Note: we can assume that racing actions do not have guard conditions. If we have an
action with a guard condition, we can first store the value of the condition in a local
variable and use the local variable in the guard. So we can replace an action [cond] with
two actions localVar = cond and [localVar ]. This way, data race can occur between actions
without a guard condition.
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As a consequence of this assumption, if we have an action α that is in a race with another
action, α is the single action starting from the source location of α in the CFA of pα (since
branching operations always have guard conditions in a program).

Theorem 6. Let S be the original state space, and SR be the reduced state space obtained
from S by a source set selective search (satisfying the conditions of Theorem 2). Let w be
an execution in S from state s in SR that contains a data race.
There is also an execution w′ in SR from s that contains a data race. �

Proof. Since we use a source set selective search, based on Theorem 2, there is an execution
w′ in SR such that w.v ≃s w′ for some transition sequence v. That is w.v and w′ are in
the same Mazurkiewicz trace. Let sdr be the state with s

w−→ sdr (where the data race
occurs), and s′ be the state with s

w.v−−→ s′ and s
w′
−→ s′.

Let the processes of α and β be pα and pβ, and the source location of α and β in the CFA
of their processes be lα and lβ respectively. In sdr, pα is in lα, and pβ is in lβ.
Since w.v and w′ are in the same Mazurkiewicz trace, the same actions are used (their
order may be different). As a consequence, the same CFA locations are reached in w′ as
in w.v. Since lα is reached in w (e.g., in sdr), pα is in lα in some states of w′ (same for
β). Let lα be reached first in w′ (the case is symmetric, we could choose lβ): let sα be the
state where lα appears first in w′ (that is where α is first enabled in w′), and sβ be the
state where lβ appears first. From our assumption, sα is reached earlier in w′ than sβ. It
is not assured though, that α is still enabled in sβ (pα may have a step between sα and
sβ).
If α is still enabled in sβ, we are ready because we have found the data race in SR. For
the rest of the proof, assume that α is not enabled in sβ. This can only happen if α is one
of the actions of w between sα and sβ since α does not have a guard condition (α cannot
simply "get disabled"), and it is the only action from lα (α cannot be bypassed) based on
the notes made before the theorem. As w.v and w′ in the same Mazurkiewicz trace, α
appears in v.

α β

w

s

v

s'

w'

sα

sβ

α

α

^
β

^
β

τisdr

(a) Case I.

βα

w

s

v

sdr

s'

w' w'β

sα

sβ

α

^
β

w''

β

s'β
wβ

^
β

α

vβ

α

β

^
β β

α

(b) Case II.

Figure 5.2: State space in the proof
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Let β̂ be the action of pβ preceding β in w′ (i.e., the target location of β̂ is lβ, and β̂ is the
action in w′ reaching sβ). We have two cases. Figure 5.2 hopefully helps in understanding
what is described in the below cases. Transition sequences with a continuous line are in
SR, while dashed lines indicate sequences in S only.

I. α is dependent with β̂ transitively, that is, there are actions τ1 = α, τ2, ..., τn = β̂ in w′

in this order such that τi is dependent with τi+1 for 1 ≤ i < n.
α starts from lα, and in w.v, α comes after sdr. The target location of β̂ is lβ, so β̂

comes before sdr in w.v, and by its definition, β̂ comes before sβ in w′.
Since w.v and w′ are in the same Mazurkiewicz trace, the two traces can be obtained
from each other by successively swapping adjacent independent actions. In w.v, β̂
precedes α, while in w′, they appear in reversed order. To get w.v from w′ by
successively swapping adjacent actions, we have to swap α and β̂. For this, we have
to swap τi with τi+1 at some point (for some 1 ≤ i < n), but they are dependent.
So we cannot obtain w.v and w′ from each other by successively swapping adjacent
independent actions which is contradiction.

II. If the condition of case I. does not hold, we can achieve a new trace w′′ with several
independent swapping steps (which is still in the same Mazurkiewicz trace with w.v
and w′) where β̂ comes before α. Note that we can make these swappings so that
only the part of w′ after sα changes, so w′′ also passes through sα. At the target
state s′

β of β̂ in w′′, both α and β are enabled.
Unfortunately, w′′ is an execution in S, and it is not necessarily explored (not nec-
essarily in SR). So we have to go on with reasoning.
Consider the execution from sα to s′

β extended with β: wβ. We are still using a
source set selective search, so we can apply Theorem 2 again. Based on the theorem,
an execution w′

β is explored from sα with w′
β ≃sα wβ.vβ for some transition sequence

vβ. Since wβ contains β but does not contain α, w′
β can only contain α after β (since

wβ.vβ and w′
β are in the same Mazurkiewicz trace and α and β are dependent). This

means that α is enabled in all states of w′
β from sα until β is reached. That is α and

β are both enabled in the state before β in w′
β.

So we always reach a state in SR where α and β are both enabled. □

We have proven that if we use partial order reduction for data race detection, we will find
all data races in the reduced state space that are present in the original state space.

5.3 Implementation Notes

On the implementation front, data race detection required a new interpretation of error
states. A new predicate has been implemented for deciding whether a state is an error
state. This predicate checks whether any two enabled actions in the state are racing
actions.
Otherwise, the partial order reduction algorithm (not its abstraction-aware version, only
the traditional) implemented in a previous phase of this work for the state space explo-
ration can be used without modifications.
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Chapter 6

Evaluation

The implemented algorithms have been evaluated on C programs since Theta supports
the parsing of C programs [9] and a large set of benchmark data is available in the form
of C programs1 [10].

6.1 Case Study

In this section the concepts and algorithms presented in the previous chapter are illustrated
on a small multi-threaded program.
Let our example be the C program from Figure 6.1a (some operations are labeled for
later reference). There are two threads: the main thread m and thread t is created by m.
We would like to verify this program: our formal requirement is that no error location is
reachable in any execution of our program (reach_error() indicates the error location).
We can quickly tell that the program is unsafe: if y = 1 on m is executed between y = 2
and the condition check on t, the program reaches the error location. So we anticipate
that the result of the model checking will be unsafe (with a counterexample telling us how
the error location can be reached). The abstraction-aware version of POR will be used
with lazy pruning.
For the model checking, the program is converted to an XCFA (see Figure 6.1b), that is,
both threads have its own CFA. (For the sake of simplicity, variable initialization at the
beginning and return operations have been removed from the figure.) The error location
is highlighted in the CFA of thread t.
Let us use explicit-value abstraction in CEGAR and let the precision be {x} in the first
iteration, so only the value of variable x is tracked. Figure 6.2a depicts the abstract state
space of the first iteration. Rectangles are states and arrows are transitions. The locations
of the active processes are shown in a state along with the value of the tracked variables
(which is only x in this iteration). The labels of transitions indicate the performed action
with the thread of that action. To be concise, si,j refers to the state where the locations
of the threads are Lm,i, Lt,j (s1,0 refers to the state with Lm,1, Lt,0 and s3 refers to the
state with Lm,3).

1gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c
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int x = 0, y = 0;
void *f(void *arg) {

α: x = 2;
β: y = 2;

if(x > y) reach_error();
return 0;

}
int main() {

pthread_t t;
pthread_create(&t, 0, f, 0);

γ: y = 1;
pthread_join(t, 0);
return 0;

}

(a) Source code

start thread t

Lm,0

y = 1 (γ)

Lm,1

join thread t

Lm,2

Lm,3

     x = 2 (α)

Lt,0

     y = 2 (β)

Lt,1

[ x ≤ y ] [ x > y ]

Lt,2

Lt,3 Lt,e

Thread m: Thread t:

(b) XCFA of the program

Figure 6.1: Small example to illustrate the presented algorithms

From s0, the only enabled action is the one that starts thread t. This action forms a
(trivial) source set in itself; it is explored from s0.
In s1,0, the enabled actions are {α, γ}. With precision {x}, valid source sets are {α}, {γ},
and {α, γ}. Note that {γ} is not a source set if we do not consider the abstraction because
β ∈ future_actions(s1,0, α), and β and γ both uses the variable y, so α would have to
be added to the source set. On the other hand, when we calculate dependency with
the consideration of the precision, β and γ are independent since they do not commonly
use any tracked variable. Algorithm 2 returns in s1,0 the source sets {α} and {α, γ},
while Algorithm 4 returns the source sets {α} and {γ} for the initial actions {α} and
{γ} respectively. Then, one of the smallest source sets is chosen: {α} can be the choice
both with the traditional POR and the abstraction-aware POR algorithm. The validity
set returned by Algorithm 4 for this source set is X = ∅, which means this source set is
valid in any abstraction. As the source set {α} has been chosen, only α is explored from
s1,0.
Unexplored transitions are marked with a cut symbol and lead to a question mark to denote
that those parts of the abstract state space have not been explored. These transitions are
colored with green if only abstraction-aware POR ignores it and with purple if traditional
POR ignores it, too. Also, a label indicates the algorithms that ignore the given transition.
In s1,1, β and γ are enabled. Traditional POR explores both of them because they both
use variable y, so they are dependent. However, abstraction-aware POR explores only
one of them, let it be γ. The validity set is {y} for this source set: if y is added to the
precision, {γ} will no longer be a source set in s1,1. Now, the main thread has to wait
until thread t terminates to perform the join operation. In s2,2, the guard condition of
the actions starting from Lt,2 evaluate to unknown because y is not tracked, so both of
them is enabled. One branch terminates normally, but the other reaches the error location
Lt,e. The transitions of the abstract counterexample leading to the error state found in
iteration 1 is highlighted with yellow on Figure 6.2a. This counterexample is given to the
refiner to decide whether it is spurious or feasible.
The counterexample turns out to be spurious: if we execute the operations in this order, x
will not be greater than y, so the error location is not reachable in fact. The refiner refines
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Figure 6.2: Abstract state spaces in the model checking

the abstraction by adding y to the set of tracked variables: the new precision is Π = {x, y}.
In addition, the refiner prunes the abstract state space lazily. Let the preserved states be
{s0, s1,0, s1,1} (highlighted with blue on Figure 6.2b).
In iteration 2, the exploration restarts from s1,1 where the abstract state space has been
pruned in the refinement step. Besides, the preserved states are processed with Algo-
rithm 5. In s0, there is no unexplored enabled action, so no more actions have to be
explored from there. In s1,0, the chosen source set was {α} in the last iteration with an
empty validity set X = ∅. Since X ∩ orig(χ) = ∅ for any abstract variable χ ∈ Π, {α} is
still a source set in this iteration: we do not have to explore new actions from s1,0.
The previously used source set of s1,1 has been {γ} with a validity set X = {y}. Since we
use explicit-value abstraction, orig(y) = {y} for the abstract (and also concrete) variable
y. X ∩ orig(y) = {y} which is not an empty set. So {γ} is not source anymore in s1,1, a
new source set has to be calculated. Anyway, this is the point where the abstract state
space has been pruned in the refinement step, so the exploration would have to start again
from this state. Unfortunately, β and γ are dependent in this abstraction, so the only
source set in s1,1 is {β, γ}. It is not surprising, though: all variables are tracked in this
iteration, so we do not expect that actions operating on the same variable are judged
independent even by AAPOR.
From here, the exploration of the state space continues according to Figure 6.2b. Again,
an abstract counterexample is found. The refiner checks whether this counterexample is
spurious or feasible. Now, we have a feasible counterexample: if we execute the operations
based on the yellow path leading to s2,e in Figure 6.2b, we reach the error location, indeed.
At this point, the verification is complete: the algorithm returned an unsafe verdict and
the counterexample found in the last iteration.
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6.2 Evaluating on Benchmark C Programs

The implemented partial order reduction algorithms and optimizations have been evalu-
ated on a set of 763 C benchmark programs provided by SoSy-Lab.2 Programs from the
pthread-* folders were used. The same benchmarks are used in SV-COMP [10].

6.2.1 Test Configurations

The benchmark tests were carried out with different configurations of Theta. The POR
algorithm itself has been tested in three version: POR disabled (NO_POR), only traditional
POR has been applied (BASIC) or abstraction-aware POR has been applied (AAPOR). The
LBE optimization was either turned on (LBE) or turned off (NO_LBE). The pruning strategy
has been FULL or LAZY. The abstraction domain was explicit-value abstraction (EXPL)
or Cartesian predicate abstraction (PRED). Several combinations of these configurations
were tested.

6.2.2 Results

This section shows the results of the benchmark tests. Each test had a time limit of 900
seconds: Theta had this amount of time to perform the model checking and come to a
verdict.

6.2.2.1 Number of Solved Tasks

Firstly, as for correctness, the provided results (where Theta could respond before time-
out) were practically all correct3. The great number of correct results and the absence of
incorrect ones confirm that the implemented algorithms work correctly.
As for the performance, Figure 6.3 shows the number of solved tasks (out of 763) by
configuration. With my contributed algorithms, Theta is capable of solving 3-8 times
more problems depending on the configuration.
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Figure 6.3: Evolution of the algorithms
2gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c
3In fact, a few results are incorrect, but these tasks have been removed from the SV-COMP benchmark

set since this benchmark was performed because it turned out that these tasks contain a data race which
leads to undefined behavior. See details in commit fa5078c6 of the sv-benchmarks repository.
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An important note on the number of solved tasks is that it can largely depend on the
portion of benchmark programs that can be parsed by Theta. For example, Theta
currently does not support structs and some other C language elements. As a result,
Theta can only parse 381 programs from this benchmark set.
Figure 6.4 highlights my contributions with explicit-value and predicate abstraction. The
1st (blue) columns in both groups show the results without my contributions. The results
in the 2nd (orange) columns were achieved with traditional POR, the 3rd (green) with
abstraction-aware POR. In the first three cases, the large-block encoding optimization was
turned off; the 4th (red) columns show the results where LBE was applied.

Figure 6.4: Number of solved tasks

6.2.2.2 CPU Time

Exploring the number of solved tasks does not tell us everything about performance as
the benchmark programs are not homogeneous. To get a better understanding of the
performance of the presented algorithms, let us have a look on the time taken to solve tasks.
In this section, I concentrate on the POR algorithms and omit the LBE optimization.
The quantile plots of Figure 6.5 show the CPU time taken to solve the problems. The
horizontal axis represents the tasks, while the vertical axis shows the CPU time in seconds
that Theta needed to solve the corresponding problem. The problems are sorted based
on time to solve: that is why the curves are monotonically increasing. Figure 6.5a and
Figure 6.5b plot the CPU time measured in the EXPL and PRED domains respectively. In
these plots, a flatter curve means more tasks solved in less time. These plots confirm
that POR considerably improves the performance. Furthermore, though not excessively,
abstraction-aware POR outperforms the traditional version of POR.
At first sight, there does not seem to be a considerable difference between traditional and
abstraction-aware POR in Figure 6.5a. However, that small gap between the curve of
traditional POR (marked with circles, orange) and the curve of AAPOR (marked with
triangles, green) means significant difference in the average problem-solving time. In this
case, traditional POR solved tasks in 110 seconds on average, while abstraction-aware
POR managed it with an average of 87.3 seconds. That is, traditional POR needed 26%
more time on average than AAPOR.
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Figure 6.5: CPU time taken to solve tasks

Exploring an action in the state space is a costly operation because it requires to solve
an SMT problem (with the help of the Z3 SMT solver [28]). In the benchmark tests,
the number of explored actions has also been counted for each problem. Plotting these
data reveals similar characteristics to the CPU time plots. The similarities are illustrated
in Figure 6.6. The plots in the first row are the same as in Figure 6.5. The number of
explored actions is plotted in the second row. The charts in the same column refer to
the same configuration to make the similarities between the CPU time and the number of
explored actions easy to see.
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Figure 6.6: CPU time and number of explored actions

6.2.2.3 Memory Usage

The memory usage has also been measured during the verification. An important note on
memory usage measurement is that Theta runs on the JVM, which means a considerable
noise in the recorded data. For this reason, exact numerical results are not presented in
this section. From the available 16GB of memory, less than 3GB has been used for most
solved tasks.
Figure 6.7 shows relative memory usage compared to the results with the NO_POR configu-
ration in each group. To make a fair comparison between configurations, only those tasks
were considered for this chart in each configuration group which were correctly solved by
each configuration in the group. The sum of used memory for these tasks were plotted
relative to each other.
The chart shows that my algorithms decrease the memory usage of Theta. This meets
our expectations, since as the size of the state space is reduced with POR and LBE, less
memory is needed to store the explored states.
Interestingly, AAPOR needed more memory than BASIC POR in the third configuration
group. In the forth column as well, AAPOR does not use significantly less memory even
though the size of the explored state space is considerably smaller with AAPOR (c.f., Fig-
ure 6.6 bottom right chart). Most probably, this may be the result of the small number
of tasks (15 and 17) solved by each configuration in those groups.
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Figure 6.7: Memory usage compared to NO_POR

6.2.3 Comparison to Other Verification Tools

In this section, Theta is compared to other verification tools. The comparison is based
on the prerun results of software verification competition SV-COMP 2023. These prerun
tests were performed in November 2022. The real benchmark tests are carried out at the
beginning of December: results have not been published at the time of writing, yet.
There are two columns for Theta: the first (with considerably less solved tasks) is the
version competing in SV-COMP 2023. Unfortunately, some algorithms have not been
implemented in this version concerning POR, so the full potential of my algorithms is not
exploited by Theta in this year’s SV-COMP. For this reason, I have added the green
column for the tasks solved by Theta with my algorithms (POR and LBE).
The number of solved tasks is plotted by tool in Figure 6.8. The blue bars represent the
correctly solved tasks, the red bars stand for the incorrect results, and the orange bars for
the tasks that were not solved by the tool (due to timeout or a runtime error).
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Figure 6.8: Solved tasks by tools in SV-COMP 2022
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Figure 6.9: Solved tasks by tools in SV-COMP 2022 that Theta can parse

Again, keep in mind that the number of solved tasks by a tool can largely depend on the
portion of benchmark programs the tool is capable of parsing. This is about half of the
programs in the case of Theta. To compare the reasoning power of tools with Theta,
Figure 6.9 only shows the tasks that Theta is capable of parsing.

6.3 Evaluation of Data Race Detection

This section gives a brief overview on the results of data race detection benchmark tests.
From a set of 903 programs, Theta can parse 389. No incorrect results were produced.
The abstraction domain, and the pruning strategy has been measured with different con-
figurations (with the same values as in the benchmarks of the previous sections), though
the results do not vary considerably based on these configurations as Figure 6.10 shows.
With POR, Theta can verify about 5.3 times more tasks in this benchmark set.
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Figure 6.10: Data race detection results

Figure 6.11 plots the used CPU time by task. POR apparently improved the performance
of data race detection. Though there is no difference in the number of tasks solved with
explicit-value and predicate abstraction, Theta needed around 20% less time for the
verification of these tasks when explicit-value abstraction was used (only counting correctly
answered tasks).

50



0 20 40 60 80 100 120 140
Tasks

0

200

400

600

800
cp

ut
im

e 
(s

)
EXPL, POR
PRED, POR
EXPL, NO POR
PRED, NO POR
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6.4 Benchmark Conclusions

Benchmark results show that partial order reduction makes the abstraction-based verifi-
cation of concurrent software much more efficient. The proposed abstraction-aware POR
further improves the performance. Looking at both the number of solved tasks and the
CPU time taken for problems to solve, we can conclude that abstraction-aware POR
achieves better improvement with predicate abstraction.
Large-block encoding turned out to be a very efficient optimization technique that con-
siderably improved the performance of the verification.
With these results on the SV-COMP benchmark data set, Theta can now be considered
a competitive tool in the concurrency safety category of SV-COMP (according to results
at SV-COMP 2022 [10]).
Naturally, there are some threats to the validity of the benchmarking, though hopefully,
they did not change the results substantially. The tests were performed in a distributed
environment of several virtual machines in the BME NIIF cloud4. Even though, the VMs
had equal resources (16GB of RAM, 8 CPU cores, Ubuntu 20.04 LTS operating system),
it cannot be assured that all tasks ran in exactly the same circumstances. Some other
operating system tasks in the VMs or some fluctuations in the host environment where the
VMs were run could add certain noise to the benchmark results. On the other hand, the
tests were carried out with BenchExec, a benchmark execution environment that fulfills
the requirements for reliable benchmarking [17]. Furthermore, the tests were performed
multiple times which yielded similar results. These factors strengthen the validity of the
benchmarks.

4https://niif.cloud.bme.hu
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6.5 Summary

Software verification is a difficult task where various techniques were introduced to handle
data and reduce the complexity yielded by concurrent, multi-threaded software solutions.
The following list summarizes my contributions in the scope of this work.

• I introduced a combined abstraction-based software verification approach that re-
duces the complexity of thread interactions to be explored in concurrent software.

• I proposed a novel partial order reduction algorithm working on the abstract state
space representation: I devised a new definition of dependency, that exploits infor-
mation encoded in the current precision of the abstraction.

• I have shown that the proposed algorithm can be used together with a lazy extension
of CEGAR.

• I proved the correctness of the proposed methods.

• I implemented the presented algorithms along with a large-block encoding optimiza-
tion in the Theta model checking framework.

• I have introduced along with a proof of soundness how partial order reduction can
be used to improve the performance of data race detection.

• I performed benchmark tests and analyzed the results.

The proposed algorithms improve the performance of concurrent software verification.
With my work, I contributed to the open-source verification tool, Theta. My contribution
enables Theta to verify a wider range of concurrent programs from safety-critical systems.

6.6 Future Work

Though the presented algorithms considerably enhance the verification of concurrent pro-
grams, it is still a proof-of-concept implementation, so far. The solution could be improved
in many ways. Such possibilities for future work are the following.

• A DPOR algorithm (e.g., Source DPOR or Optimal DPOR [1]) could be used as the
base of POR instead of the currently applied static approach to the computation of
source sets.

• The dependency relation could be further optimized by distinguishing read and write
depencencies, where two read operations are independent.

Software verification, especially the verification of concurrent software remains a hard
problem. I hope to find new solutions and optimize the algorithms presented in this work
to make concurrent software verification feasible for safety-critical systems of larger scale.
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