Reasoning with Happens-Before Relations about
Concurrent Programs in the THETA Framework

Csandd Telbisz®, Levente Bajczi®, Déniel Szekeres®, Andrds Voros®, Istvan Majzik
Budapest University of Technology and Economics
Department of Artificial Intelligence and Systems Engineering
Budapest, Hungary
Email: csanadtelbisz@edu.bme.hu, {bajczi,szekeres,vori,majzik}@mit.bme.hu

Abstract—The model checking of multi-threaded programs
often involves reasoning about the happens-before relation of
concurrent program instructions. Several algorithms exist for
finding a partial order of instructions that is consistent with
ordering constraints of the assumed memory model and that
violates a safety property; or for proving that such partial orders
do not exist. We present existing and novel bounded model
checking approaches reasoning with happens-before relations
of concurrent programs. These algorithms are implemented in
THETA, a modular model checking framework. We also give
a comparative evaluation of our THETA implementations and
state-of-the-art verifiers.

Index Terms—concurrency, happens-before relation, THETA

1. VERIFICATION WITH PARTIAL ORDERS

Due to the great number of possible thread interleavings
in concurrent programs, formal verification is cardinal for
discovering all possible behaviors of the program. In this
paper, we focus on the bounded model checking (BMC)
of multi-threaded programs with shared variables. While the
techniques presented here can be generalized to weak memory
models [1f], the scope of this paper is limited to sequential
consistency (SC). These BMC techniques assume a loop-free
(or unrolled) program. The aim of verification is to prove
that an unsafe state (i.e., a violation of an assertion) is not
possible with any interleaving of concurrent instructions; or to
reveal an execution where a violation occurs. The presented
approaches represent program executions as partial orders of
program instructions using a happens-before relation (<).

The program and the verification requirement (e.g., an
assertion) are symbolically encoded to a Satisfiability Modulo
Theories (SMT) formula along with some constraints regard-
ing the happens-before relation [2], [3]] (hence it is bounded:
the whole program has to be encoded in a finite formula).
Then, an SMT solver is used to decide the satisfiability of
this verification formula. A satisfying assignment gives a
violation of the requirement; an unsatisfiable result means
that a violation is not possible, and the program is safe. In
this paper, we introduce and compare the BMC techniques

This research was partially funded by the 2024-2.1.1-EKOP-2024-00003
University Research Scholarship Programme under project numbers EKOP-
24-2-BME-118 and EKOP-24-3-BME-{159,213}, and the Doctoral Ex-
cellence Fellowship Programme under project numbers 400434/2023 and
400443/2023; with the support provided by the Ministry of Culture and
Innovation of Hungary from the NRDI Fund.

following the above principles implemented in the THETA
model checker [4], [5] along with a novel enhancement of
these techniques.

Going into more detail, an event graph is built based on
the program structure where events are variable accesses, and
the set of edges is the happens-before relation. Intuitively,
e1 < eo means that event e; must precede es in all program
executions represented by this happens-before relation <. An
event is characterized by the accessed variable, a unique
index per variable (for easy reference), a guard condition (the
conjunction of branching conditions that lead to the respective
instruction) and an access type (read or write). Assignments
are encoded to constraints so that the guard of the write event
implies the assignment: e.g., y1 # 1 = zo = 1 — yy for
the program in The negation of the assertion is also
encoded as we aim to find a violation or to prove that none
exists. For [Figure 1] it is —(z5 = 1V y5 = 1).

The happens-before relation consists of several relations
and must satisfy certain axioms. The actual set of base
relations and axioms depends on the memory model. The
most straightforward relation is the program order (po) which
relates events based on the natural order of variable accesses
in the program code (cf. the transitive closure of gray edges in
[Figure 2). The read-from (rf) relation relates a write event w to
a read event r if r reads the value written by w. The simplest
axiom is transitivity: e; < es A ey < es = e1 < e3. Due to
space limitations, we refrain from introducing other necessary
relations and axioms, as they are well documented in the lit-
erature [1[], [3]]. The rf-relation is represented symbolically by
creating Boolean variables for each pair of events that may be
rf-related: rfij being true means that wy, <,f 75, Where wy,
and r,, represent the respective write and read accesses of x.
Several constraints can be devised from the intended semantics
of the rf-relation such as rf f ;= T =z Aguard,, N guard%
which means that if events are rf-related, then their values
must be equal and their guards must be true. For a complete list
of rf-related constraints, we refer the reader to previous works
[3]]. These constraints are also appended to the verification
formula. Some base relations and axioms are encoded in the
verification formula (such as rf constraints), while others are
guaranteed by the algorithm.

A decision procedure aims to find an assignment to the
written/read values of all events and to the values of introduced

https://orcid.org/0000-0002-6260-5908
https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0002-2912-028X
https://orcid.org/0000-0001-7617-3563
https://orcid.org/0000-0002-1184-2882

initially: xo = yg = 0

Thread t; Thread to
if (y1==1) x1=1; Y3=X3;
else xo=1-yo; x4=1-V4;
finally: assert (x5==1 || ys==1)

Fig. 1: Two-threaded program with shared variables x and y

relation variables (such as rf variables) that is consistent
with the axioms of the memory model. For this, the decision
procedures use SMT solvers in different ways. In many
memory models (such as sequential consistency), consistency
means that the happens-before relation is acyclic (intuitively,
circular precedence should be avoided). For example, the
happens-before relation (with an arbitrary choice of rf edges)
corresponding to is inconsistent due to the cycle
formed by the two rf and po edges (or equivalently, due to
the self-loop formed at any event of the cycle by transitivity).

II. DECISION PROCEDURES

This section introduces the ideas of three decision proce-
dures for solving the satisfiability of the verification formula.
While these approaches all rely on SMT solvers, the way the
solvers are used is fundamentally different in the approaches.

A. Integer Difference Logic (IDL)

The first method encodes every constraint into the SMT
formula by representing the happens-before relation as tempo-
ral precedence [2]. A Boolean variable hb,, ., is created for
each pair of events representing the happens-before relation.
A clock variable clk. is associated with each event, meaning
when that event happens. For each pair of events, the constraint
hbey e, = clke, < clke, is added to ensure the intended
semantics of the happens-before relation and clock variables.

The acyclicity of the happens-before relation is guaranteed
by the acyclicity of the less-than relation on clock variables.
Other constraints such as rfﬁj = hbwmi,rm. (the rf-relation
is part of the happens-before) or hbe, ¢, A libe,z_ﬁ3 = hbe, ey
(transitivity) are also added that ensure the consistent use of
relation variables and axioms. Since everything is encoded
into the formula, we can simply pass it to an SMT solver
to decide its satisfiability. A satisfying assignment gives an
event scheduling leading to an assertion violation.

B. Refinement Step-by-Step (RFN)

This approach omits all happens-before constraints (that
contain a hb variable). Thus, the formula may become sat-
isfiable even if a violation is not possible. The formula is
iteratively refined by querying an SMT solver: the returned
assignment is analyzed if it satisfies the axioms of the happens-
before relation or if it is inconsistent due to omitted con-
straints. In the latter case, a refinement clause is generated and
added to the solver excluding this inconsistency. The same is
repeated until the solver reports unsatisfiable or a real violation
is found [6].

Fig. 2: Event graph with some happens-before edges

Deciding whether an assignment is a valid model for a
happens-before relation is the consistency checking algorithm
[3]], [[7]. Basically, the event graph is updated based on the
values of the relation variables in the model given by the
solver. Then, further edges are added (e.g., transitive closure)
to make sure that all necessary axioms are satisfied. Tech-
nically, axioms can often be formulated as derivation rules
with a precondition (if certain events are related...) and a
consequence (then some other events must also be related). An
example of a derivation rule for transitivity is: if e; < eg and
ey < es, then e; < es. This is convenient for cycle detection
as we only need to start from base relations (such as po or rf)
and add new edges using the derivation rules until a fixpoint
is reached where all axioms are satisfied. Finally, it is checked
whether the event graph contains a cycle (or equivalently, a
self-loop due to the transitive closure).

If a cycle is found, a conflict clause is generated. A conflict
clause is the conjunction of the reasons for the edges of a
cycle, trivial edges omitted (e.g., po edges). The reason for an
edge is either the Boolean variable in case of a base relation
(e.g., an rf variable) or the precondition of the derivation
rule that added the edge to the event graph. The refinement
clause added to the solver is the negation of the conflict
clause. For example, the consistency check finds the cycle
in when the solver returns a model where the rf
variables corresponding to the red edges are set to frue. Then,
the following refinement clause would be added to the solver
to avoid this inconsistency: —(rf}; A 7f3 3).

C. SMT Theory with User Propagator (PROP)

The third method incorporates consistency checking into
the SMT solver as a theory solver [3]]. SMT solvers gradually
build a partial variable assignment to find a satisfying complete
variable assignment. Each time a new variable gets a value
in the partial assignment, all relevant theory solvers (e.g., a
linear arithmetic theory solver) are queried to confirm if this
new partial assignment is still consistent with their theory. If
a theory solver finds an inconsistency, it propagates a conflict
clause, and the SMT solver backtracks and tries to extend the
partial assignment with different values.

The ordering consistency theory solver (that realizes the
main logic of this decision procedure) subscribes to change
notifications for relation variables (e.g., rf variables) and guard
conditions: the SMT solver calls the theory solver whenever a
registered expression gets a value (true or false) in the partial
assignment during the search space exploration [8]]. Upon such

IDL

2

@) REN

Z 15| ——PROP :

S 1 .

Solved Time(s) IDL RFN g= \‘

IDL 538 34153 73 538 544 S 05l & |
REFN 544 9989 cveb 537 529 : L L L ! L
PROP 549 10183 MathSAT 307 528 NONE S2 SIMPLE S3 S4

TABLE I: Decision procedures

notifications, a consistency check is performed using the same
method as in to update the event graph and check
for cycles [7]. When an inconsistency (that is, a cycle) is
found, a clause is generated similarly to [Section II-B| and
it is propagated as a conflict clause.

From a theoretical point of view, the main difference be-
tween this decision procedure and the previous approach is that
REN performs consistency checking on a complete variable
assignment, while this approach works on a partial model. The
advantage of the propagator approach is that inconsistencies
are found earlier during the SMT solving as there is no need to
find a satisfying assignment of all variables to detect a conflict.
On the other hand, consistency checking is performed more
frequently by the propagator (each time a relevant expression

is assigned). reveals the performance trade-off

between the two methods.

III. AUTOMATIC CONFLICT AVOIDANCE

The presented methods put most of the reasoning into the
SMT solver or the consistency checking algorithm: initial
constraints are simple, and excluding inconsistencies is left to
the decision procedures. We apply a novel optimization before
starting the decision procedure.

Potential conflicts can be found by analyzing the program
structure. A potential conflict is a cycle in the event graph
that may arise at some point in the decision procedure. Our
algorithm looks for cycles in the potential happens-before
relation, the so-called may-set of the happens-before relation,
an over-approximation of all possible actual happens-before
relations [9)]. Conflict clauses are generated from potential
cycles similarly to how it is done in the REFN and PROP
decision procedures presented in These clauses
(their negations) are added to the verification formula. For
example, the same clause as at the end of can be
found and added to the solver by our algorithm before starting
the decision procedures. Since these clauses represent incon-
sistencies, the satisfiability of the formula does not change by
adding these extra clauses. Thus, the final verification verdict
is not affected either, so our optimization is sound. However,
it can greatly reduce the solver search space.

The way of searching for such cycles is based on the relation
variables collected for encoding the verification formula, and
on axioms of the assumed memory model. The same idea is
used as in the consistency checking algorithm of the decision

TABLE II: Solved tasks by solver

Fig. 3: Times with conflict avoidance

procedures, the only difference being that an actual happens-
before relation is used there, while this optimization only
has the potential happens-before relation. Since the potential
happens-before relation contains all possible related pairs,
there is an impractically large number of cycles. Therefore,
we bound the size of these cycles. To have a measure for the
size of cycles, the size is defined to be the number of non-
trivial base relations (not po) plus the number of non-trivial
derivation rule applications (not transitivity) that create the

cycle. For example, the size of the cycle in is 2.

IV. EVALUATION AND CONCLUSIONS

We evaluate the presented techniques implemented in
THETA by comparing the methods to each other and to state-
of-the-art verifiers. THETA is a configurable formal verification
framework that supports several input formalisms and several
model checking backends [4]], [5]]. Our implementation of the
IDL and RFN methods can use any SMT solver via SMT-LIB:
specifically, we tested Z3 (4.13.0) [10], cveS (1.0.8) [11], and
MathSATS5 (5.6.10) [[12]]. Our PROP algorithm can only use Z3
via JavaSMT [[13] being the only solver that allows the easy
integration of a custom SMT theory via its user propagator
interface [8]. We evaluated on the 725 SV-COMP concurrent
reachability benchmark programs [14]. The experiments were
executed in the cloud platform of our university with a 15-
minute timeout and a 15 GB memory limit per task.

First, we compare the performance of the three decision
procedures implemented in THETA (using Z3 in all cases).
The number of solved tasks and the total CPU times for
the 525 commonly solved tasks are listed in The
methods performing consistency checking on event graphs are
more efficient than a direct encoding to IDL based on the
results. Even though the PROP algorithm scales slightly better
(inasmuch as solving more tasks before timeout without the
conflict avoidance optimization), the average solving time is
lower for RFN.

The winner in terms of SMT solver is Z3 (see [Table TI).
With RFN, cve5 solves 3 extra tasks and MathSAT solves 1
extra task that Z3 cannot solve; with IDL, the two solvers
solve 5 and 6 additional problems compared to Z3, respec-
tively. Regarding CPU time, Z3 dominates by far.

For evaluating the automatic conflict avoidance algorithm,
we test the following options with each decision procedure:
NONE (disabled), S2, SIMPLE, S3, S4 where Sn means

THETA (complete) DARTAGNAN

IDL RFN PROP Eager Lazy
Solved/ 398 409 410 456 457
filtered 398 409 410 434 433
Time (s) 26000 4150 5770 11200 6370

THETA (bounded) DEAGLE

IDL RFN PROP
Solved/ 538 554 553 623
filtered 538 554 553 577
Time (s) 35000 6020 8690 2020

TABLE III: Comparison with state-of-the-art verifiers (using conflict avoidance for THETA)

that cycles of size < n are encoded, and SIMPLE allows 2
(non-trivial) base relations plus 1 (non-trivial) derivation rule
application for deriving a cycle (so SIMPLE is between S2
and S3). shows the total CPU times for commonly
solved tasks relative to the NONE configuration by decision
procedure. Clearly, adding conflict clauses of small cycles to
the verification formula improves verification performance. As
the allowed size of cycles increases, the gain of trimming the
search space is negatively compensated by the overhead of
finding and handling the large number of cycles (see S4).
The optimization does not improve the IDL procedure, but
it considerably accelerates the other two methods. The most
solved tasks are achieved by the S2 and SIMPLE options (554
for for REN and 553 for PROP).

We also compare THETA to state-of-the-art verifiers:
DARTAGNAN (winner of SV-COMP’24 concurrency category
[14]) that implements an eager encoding (similar to our IDL)
and a lazy decision procedure [1]], [9]. Since DARTAGNAN
only accepts safe results when complete loop unrolling is
possible, we apply the same strategy for this comparison
(complete). We also compare to DEAGLE (SV-COMP’25
concurrency winner) that follows the propagator approach
[15]. DEAGLE reports safe if no violation is found even if only
a bounded loop unrolling is applied: for a fair comparison, we
apply the same strategy (bounded). lists the total
number of solved tasks, the number of solved tasks filtered
on the 605 programs THETA can parse, and the total CPU
times for commonly solved tasks. While the other tools solve
more tasks, the REN and PROP procedures of THETA are faster
than DARTAGNAN. Though THETA is also disadvantaged due
to front-end limitations, the comparison shows the potential of
our algorithms.

Threat to validity: The experiments were executed on
a cloud computing platform, so the loads on other virtual
machines of the same host might have influenced the results.
However, repeated executions of the experiments consistently
yielded the reported results, so the fluctuation is not significant
compared to the differences between different configurations.

Conclusion: There is a clear difference between dif-
ferent decision procedures deciding the satisfiability of the
verification formula: choosing the more sophisticated REN
or PROP methods yields a significant performance increase.
The proposed automatic conflict avoidance algorithm also
considerably accelerates verification. The differences are more
accentuated in the CPU time results, which is probably due to
having a non-linearly increasing complexity among the used
benchmark problems. In future work, we plan to extend the
presented methods in THETA to allow weak memory models.

Data Availability: THETA is an open-source formal ver-
ification framework [4], [5]. Version 6.11.10 used for the
evaluation of this paper is available at [16].

REFERENCES

[1] T. Haas, R. Meyer, and H. P. de Ledn, “CAAT: consistency as a theory,”
Proc. ACM Program. Lang., vol. 6, no. OOPSLA2, pp. 114-144, 2022.
[Online]. Available: https://doi.org/10.1145/3563292

[2] J. Alglave, D. Kroening, and M. Tautschnig, “Partial Orders for
Efficient Bounded Model Checking of Concurrent Software,” in
CAV, ser. LNCS, vol. 8044. Springer, 2013, pp. 141-157. [Online].
Available: https://doi.org/10.1007/978-3-642-39799-8_9

[31 . He, Z. Sun, and H. Fan, “Satisfiability modulo ordering
consistency theory for multi-threaded program verification,” in
PLDI. ACM, 2021, pp. 1264-1279. [Online]. Available: https:
/ldoi.org/10.1145/3453483.3454108

[4] T. Téth, A. Hajdu, A. Voros, Z. Micskei, and 1. Majzik, “THETA:
a Framework for Abstraction Refinement-Based Model Checking,”
D. Stewart and G. Weissenbacher, Eds., 2017, pp. 176-179. [Online].
Available: https://doi.org/10.23919/FMCAD.2017.8102257

[5] C. Telbisz, L. Bajczi, D. Szekeres, and A. Voros, “Theta:
Various Approaches for Concurrent Program Verification (Competition
Contribution),” in TACAS, ser. LNCS. Springer, 2025. [Online].
Available: https://ttsrg.mit.bme.hu/paper-tacas25-svcomp/theta.pdf

[6] L. Yin, W. Dong, W. Liu, and J. Wang, “On scheduling constraint
abstraction for multi-threaded program verification,” [EEE TSE,
vol. 46, no. 5, pp. 549-565, 2020. [Online]. Available: https:
//doi.org/10.1109/TSE.2018.2864122

[7]1 L. Bajczi, C. Telbisz, D. Szekeres, and A. Vords, “On Stability in a
Happens-Before Propagator for Concurrent Programs (Reproducibility
Study),” in TACAS, ser. LNCS. Springer, 2025. [Online]. Available:
https://ftsrg.mit.bme.hu/paper-tacas25-ocfix/paper.pdf

[8] N. S. Bjgrner, C. Eisenhofer, and L. Kovécs, “Satisfiability modulo
custom theories in Z3,” in VMCAI, ser. LNCS. Springer, 2023.
[Online]. Available: https://doi.org/10.1007/978-3-031-24950-1_5

[9]1 N. Gavrilenko, H. P. de Ledn, F. Furbach, K. Heljanko, and R. Meyer,

“BMC for weak memory models: Relation analysis for compact SMT

encodings,” in CAV, ser. LNCS, vol. 11561. Springer, 2019, pp. 355-

365. [Online]. Available: https://doi.org/10.1007/978-3-030-25540-4_19

L. M. de Moura and N. S. Bjgrner, “Z3: an efficient SMT solver,” ser.

Lecture Notes in Computer Science, C. R. Ramakrishnan and J. Rehof,

Eds., vol. 4963. Springer, 2008, pp. 337-340. [Online]. Available:

https://doi.org/10.1007/978-3-540-78800-3_24

H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,

A. Mohamed, M. Mohamed, A. Niemetz, A. Notzli, A. Ozdemir,

M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, “cvcS5:

A Versatile and Industrial-Strength SMT Solver,” in TACAS, ser. LNCS.

Springer, 2022, pp. 415-442.

A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani, “The

MathSAT5 SMT Solver,” in TACAS, ser. LNCS. Springer, 2013.

[Online]. Available: http://doi.org/10.1007/978-3-642-36742-7_7

D. Baier, D. Beyer, and K. Friedberger, “JavaSMT 3: Interacting with

SMT Solvers in Java,” in CAV, ser. LNCS. Springer, 2021, pp. 195-208.

D. Beyer, “State of the art in software verification and witness

validation: SV-COMP 2024,” in TACAS, ser. LNCS. Springer, 2024.

[Online]. Available: https://doi.org/10.1007/978-3-031-57256-2_15

F. He, Z. Sun, and H. Fan, “Deagle: An SMT-based Verifier for

Multi-threaded Programs (Competition Contribution),” in TACAS, ser.

LNCS, vol. 13244. Springer, 2022, pp. 424-428. [Online]. Available:

https://doi.org/10.1007/978-3-030-99527-0_25

C. Telbisz, L. Bajczi, D. Szekeres, A. Voros, and 1. Majzik, “Artifact

archive,” Mar 2025. [Online]. Available: http://doi.org/10.5281/zenodo.

15090897

(10]

[11]

[12]

[13]

[14]

[15]

[16]

https://doi.org/10.1145/3563292
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.23919/FMCAD.2017.8102257
https://ftsrg.mit.bme.hu/paper-tacas25-svcomp/theta.pdf
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1109/TSE.2018.2864122
https://ftsrg.mit.bme.hu/paper-tacas25-ocfix/paper.pdf
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-540-78800-3_24
http://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-030-99527-0_25
http://doi.org/10.5281/zenodo.15090897
http://doi.org/10.5281/zenodo.15090897

	Verification with Partial Orders
	Decision Procedures
	Integer Difference Logic (IDL)
	Refinement Step-by-Step (RFN)
	SMT Theory with User Propagator (PROP)

	Automatic Conflict Avoidance
	Evaluation and Conclusions
	References

